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Abstract

In this work, classification of haematopoietic cells is performed hierarchically, em-
ploying cascades of deep neural networks. Two strategies are defined to obtain
combined predictions from the cascades, a probabilistic approach and a greedy,
deterministic method. Although different in theory, both strategies lead to very
similar outcomes in practice. Hierarchical cascades can be trained either separately
for each network or end-to-end as a whole. It is shown that the individual training
is preferable both in terms of achieved performance as well as flexibility. Different
hierarchies are defined to guide the classification process, either oriented on the bio-
logical cell lineages, on certain features and characteristics, or in order to compensate
for class imbalance in the dataset. Several methods and optimisation techniques are
evaluated, including the possibility to incorporate regressors instead of classifiers
for certain sub-tasks where the classes have an ordinal character. In general, it is
shown that, for appropriate hierarchies, similar classification performances as with
single networks can be achieved. Especially pretraining of the individual networks
on the target dataset yields improvements. The main advantage of the cascades is
an increased modularity as well as additional information compared to single net-
works. With feature forwarding, a method introducing embedding vectors into the
cascades and passing them to subsequent networks, the learnt feature space can be
visualised not only for the entire model, but also at intermediate levels.
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This nomenclature defines important notation used throughout this thesis. Some
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a vector
na length of vector a
∇ gradient
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AT transposition of matrix A
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Neural Networks and Machine Learning

W weight matrix, including the bias
n number of outputs, number of classes
N total number of samples in the set (e.g. training set)
x arbitrary input
t target vector
y output vector
L loss
LCE cross-entropy loss
LMSE mean squared error loss
Ltree hierarchical tree loss
LWCE,γ weighted cross-entropy loss with weights γ
α learning rate
S softmax output
K kernel
I image
Y output tensor
F tensor of feature maps
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w, h width, height of an image
γi loss weight factor
δ exponent in loss weight
ν upsampling (or downsampling) exponent
S similarity matrix
L Laplacian matrix

Hierarchical Classification and Cascades
C set of all classes/nodes in a hierarchy
ci class and node label of the i-th node
c′ predicted class and node label
c0 root class/node
Ci true multi-class/multi-label of node i
C ′i predicted multi-label
Ĉi true multi-label excluding the root: Ĉi = Ci\{c0}
Ĉ ′i predicted multi-label excluding the root
P (x) probability (confidence) of x
nemb embedding length of a single network
ncat length of concatenated embedding vectors
T tree
leaves(T ) set of all leaves in a tree T
parent(i) direct ancestor of the i-th node
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1 Introduction

In the human circulatory system, a variety of blood cells is found, each performing
specific tasks. Perturbations of their development, for example from leukaemia, can
have severe consequences, including death [1].
The different types of blood cells originate in the bone marrow, ranging from

oxygen carrying red blood cells over white blood cells of the immune system up
to platelets. In clinical haematology, bone marrow samples, acquired from the pel-
vic bone, are therefore of key importance for diagnosis and assessment of different
diseases. Most prominently, the various types of leukaemia, for example chronic my-
elogenous leukaemia (CML), lead to different abnormalities. CML is characterised
by atypical cell distributions, while other diseases can for example cause the occur-
rence of certain irregular cell forms. Therefore, bone marrow samples are analysed
both for abnormal cell distributions as well as for pathological cell forms. In today’s
clinical practice, this analysis involves manual examination of multiple stained, mi-
croscopic bone marrow smear images by specially trained medical experts. This
process is not only time consuming, but also prone to errors.

A joint project of the Institute of Imaging and Computer Vision of the RWTH
Aachen University and the Department of Haematology, Oncology, Haemostaseology
and Stem Cell Transplantation of the RWTH Aachen University Hospital aims to
support medical doctors in this analysis and obtain more objective and reproducible
statistics. The goal of the project is the development and implementation of a mostly
automated analysis pipeline. After acquisition and digitalisation of whole slide bone
marrow smear images, important steps involve the detection of cells, followed by
classification of the cell types to determine the distributions of the individual cell
types. Major difficulties include very heterogeneous samples – depending on the
individual stain of different bone marrow samples – a very limited number of an-
notated samples with significant class imbalance, and a large number of different
classes, including multiple types of artefacts.

The thesis at hand focuses on the classification sub-task of this process. Previous
investigations have shown that deep neural networks are particularly powerful tools
for image classification tasks [2, 3]. In the haematological domain, the different cell
types originate from common ancestors, which differentiate into several distinguish-
able lineages. Therefore, some cell types are more similar than others. Single neural
networks, classifying all different classes at once, are not designed to explicitly ac-
count for this hierarchical domain knowledge or morphological similarities between
different cell types. In this work, the classification process is therefore split hier-
archically into several sub-tasks, using deep neural networks at intermediate levels
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1 Introduction

to assign samples to different branches of the taxonomy.
Such hierarchical cascades could not only potentially improve the classification

performance, but might also provide deeper and more accessible insights into the
classification process. Additionally, they could make the whole classification pro-
cess more flexible – up to the inclusion of different network types such as regressors
to quantify, for example, a cell’s maturity. Major tasks and problems covered in
this thesis are the development of such hierarchical cascades, including different
approaches, not only following the developmental hierarchy, but also splitting the
classification by different characteristics of the cell types.

This work is structured as follows. Chapter 2 provides a detailed introduction to
basic concepts required for this thesis. First, important medical terminology is estab-
lished, followed by detailed descriptions of the different lineages of haematopoiesis,
including important morphological characteristics. Afterwards, fundamentals from
the field of machine learning are introduced, focused particularly on convolutional
and deep neural networks, the underlying principles, and their training.
State of the art methods from fields such as deep learning and hierarchical clas-

sification are mentioned in Chapter 3. This includes descriptions of successful deep
learning architectures and related methods to improve their performance or reduce
training time. Different approaches which have been used in hierarchical classi-
fication tasks are introduced and formally defined. Additionally, the implemented
methods used in the aforementioned haematology project, which form the basis for
this work, are described. This includes not only details about the methods used in
the other steps in the analysis pipeline, but also previous findings which are relevant
for the classification task.
In Chapter 4, the methods developed in this work are introduced and described in

detail. These methods involve hierarchical cascading of classification task, focused
on the application in the haematological domain. Different methods to compose
such cascades from deep networks – both in form of classifiers and regressors – are
described. Two alternative algorithms to obtain final predictions are specified. Cas-
cade training procedures are defined, either executed separately for each individual
network, or for the entire cascade as a whole. Subsequently, various different hier-
archies, incorporating different aspects of the haematological domain knowledge, for
guiding the classification process are introduced and justified. Furthermore, sev-
eral optimisation techniques are described, either to create and utilise relationships
between different networks in the hierarchical classification process, to enable visu-
alisation of the learnt feature spaces, or to partly compensate for class imbalance.
Chapter 5 describes several experiments to evaluate these developed methods.

These experiments are described individually, followed by presentation and analysis
of the respective results.
The implications of the experimental findings and interesting aspects for the fu-

ture are summarised and discussed in Chapter 6, followed by a brief summary and
conclusion.
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2 Background

The purpose of this chapter is to introduce some basic concepts about the medical
domain as well as machine learning, and in particular deep learning. Section 2.1
provides some background knowledge about haematopoiesis, the relevant cell types
and their maturation. In Section 2.2, important foundations of machine learning
and deep neural networks are described. Concrete state-of-the-art methods and
implementations of these principles are introduced in Chapter 3.

2.1 Medical Background

Haematopoiesis is the formation of blood cells [4]. Except in the early embryotic
and foetal stages, it arises in the bone marrow. In adults, haematopoiesis normally
takes place in the marrow of the pelvis, the vertebral column, parts of the femur,
the skull, ribs, and the sternum. Consequently, blood cells of different development
stages, starting from haematopoietic stem cells, are present in the bone marrow,
which additionally contains areas of fat. After development, the cells are released
into the marrow sinuses, the marrow circulation and finally the systemic circulation.
Consequently, in the peripheral blood of healthy subjects predominantly mature
blood cells are found. Figure 2.1 provides an overview of the different cell lineages
of haematopoiesis. The analysis of bone marrow samples is of major importance in
diagnostic and assessment of diseases, most prominently different types of leukaemia.
[4–6]
In Section 2.1.1, some general terminology and properties of cells are introduced.

The subsequent sections provide basic knowledge about the cells present in the bone
marrow as well as their role in haematopoiesis.

2.1.1 Basic Terminology

Biological cells usually consist of one or even multiple nuclei and the cytoplasm.
The former contain the DNA and are necessary for cell divisions as well as for the
regulation of biochemical processes in the cell. The cytoplasm is defined as the
space between the cell membrane and the nucleus, and is the location of many
biochemical reactions. An important characteristic of cells that contain nuclei is the
nucleus-to-cytoplasm ratio (N/C), which is the fraction of the nucleus size relative
to the entire cell volume. It depends on the cell type as well as the cell maturation
and differentiation. A nucleus-to-cytoplasm ratio of 100% would mean that the
nucleus fills the entire cell. Usually, a high N/C, indicating a relatively large nucleus
compared to the overall cell size, can be found in young, but also in degenerated cells.
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10 µm

Figure 2.1: Developmental hierarchy of the cells of Haematopoiesis, as found in the
bone marrow1.

A low N/C on the other hand often indicates a mature, differentiated cell, which
requires a large cytoplasm to allow for its specialised function. The appearances of
both the nucleus and the cytoplasm are important distinctions between different cell
types. Across different cell lineages there are some common naming schemes. For
example, blasts are cells in very early stages, while the suffix -cyte is used for more
mature cells. [7]

Pappenheim Stain

Haematologic samples require staining to make the cell structures visible. The stain
predominantly used in haematological practice [5] is Pappenheim-stain. It is a pan-
optic stain, meaning that all cellular components are stained with a good contrast.
As a combination of the Giemsa and the May-Grünwald stain, the Pappenheim stain
is composed of several components which are specifically attracted by certain cellular
components. Many cellular compounds in the cell may be either basophilic, for ex-

1Source: https://commons.wikimedia.org/wiki/File:Hematopoiesis_(human)_diagram_e
n.svg, by A. Rad and Mikael Häggström, CC-BY-SA 3.0 licence (https://creativecommon
s.org/licenses/by-sa/3.0/deed.en), slightly cropped.
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2.1 Medical Background

ample the DNA, or basic, as for example some amino groups in proteins. Basophilic
components attract the blue basic stain components Azure B and methylene blue,
while basic (eosinophilic) components attract Eosin, which leads to a red colouring.
Additionally, different stain components can form dimers, leading to alterations of
light diffraction. These mechanisms lead to a range of colours and intensities that
occur in haematologic samples and are specific to certain cell types, which are in-
troduced in the following sections. [7]

Diagnostic Criteria Regarding the Nucleus

The main diagnostic criteria related to the nuclei concern the size, shape, loca-
tion, number of nuclei, colour, nucleoli and the chromatin. Chromatin summarises
specifically coloured components of the nucleus, mainly the DNA and basic chro-
mosomal proteins. The chromatin structure and colour depend on the chromatin
density within the nucleus, which itself depends on cell type and development stage.
Dense chromatin, as it often occurs especially in highly differentiated cells, appears
dark, while nuclei with a fine chromatin structure appear brighter. The shape of
the nucleus is usually round for immature cells, while for some highly differentiated
cells it can be indented. Nucleoli are small, round structures within nuclei and ap-
pear blue in Pappenheim stained slices, but can be obscured by chromatin. Their
number, shape and size depend on the cell type and activity. [7, 8]

Diagnostic Criteria Regarding the Cytoplasm

The cytoplasm contains several structures, called organelles, which can be made
visible using special staining methods. Often, there are granules visible, which
appear as small dots inside the cytoplasm and can have a different stain compared
to the cytoplasm itself. The rough endoplasmatic reticulum contains ribosomes and
is involved in protein biosynthesis. Because it is basophilic, it has blue colour in
Pappenheim stain. The Golgi-apparatus, responsible for targeting of enzymes, is
located close to the nucleus. In some, but not all cells it is visible as a lighter area
close to the nucleus. [7, 8]

2.1.2 Erythropoiesis

The development of erythrocytes, or red blood cells, is called erythropoiesis [4, 6].
Erythrocytes originate from multipotent stem cells and are specialised to carry

oxygen. For this purpose, mature erythrocytes contain haemoglobin molecules,
which are responsible for the red colour. Mature red blood cells lack a nucleus,
and therefore the capability to synthesise proteins. Normal erythrocytes have dia-
meters around 8 µm and form biconcave, flexible discs. [4]
In contrast to mature erythrocytes, their precursors do contain nuclei, which de-

crease in size and eventually disappear during the four stages of erythropoiesis [5].
In all stages of erythropoiesis, potential granules in the cytoplasm are never red,
and the nucleus is always round, if present [7].
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(a) Proerythroblast (b) Basophilic
erythroblast

(c) Polychromatic
erythroblast

(d) Orthochromatic
erythroblast

Figure 2.2: The four distinguishable cells of erythropoiesis in our dataset, showing
progressive condensation of the nucleus while the cytoplasm loses its
basophilic granulation.

The earliest precursor within erythropoiesis are proerythroblasts (see Figure 2.2(a)
for an example), with sizes ranging from 14 to 18 µm [7]. Proerythroblasts at first
do not yet contain haemoglobin, which however begins to appear around the nucleus
already in this stage. They do not yet have a disc shape which is characteristic for
mature erythrocytes. The nucleus appears pale blue with a dense, honeycombed
chromatin structure, while the cytoplasm often shows a darkly basophilic, shadowy
colour, with a perinuclear clear zone due to the Golgi-apparatus. The nucleus-to-
cytoplasm ratio of 70 to 80 % [7] is still relatively large. [5]
The next stage are basophilic erythroblasts (Figure 2.2(b)). With diameters

between 8 and 15 µm they tend to be smaller than proerythroblasts and have a
lower N/C, which ranges from 50 to 70 % [7]. The nucleus appears rougher and
more smudgy, with partially clumped chromatin, while the cytoplasm is blue. Al-
though haemoglobin is seen in larger volumes, basophilic erythroblasts still contain
basophilic material, hence the name. [5, 7]
After further maturation, the cells reach the stage of polychromatic erythroblasts

(Figure 2.2(c)). As indicated by their name, their cytoplasm has mixed colours,
ranging from brown to purple due to the presence of both basophilic RNA and
red haemoglobin. With N/C between 30 and 50 %, the nucleus size is further
decreased. [7]
At the final stage before maturation, the stage of orthochromatic erythroblasts

(Figure 2.2(d)), the cell size has decreased to diameters between 7 and 10 µm. The
haemoglobin becomes more and more dominant, causing the colour of the cytoplasm
to be predominantly light red, similar to the mature erythrocytes. Simultaneously,
the nucleus-to-cytoplasm ratio is further decreased to values between 20 and 30 %.
The nucleus appears small, round and very dense without nucleoli, and has a brown-
ish to blackish colour. At this stage, the erythroblasts have lost their ability for cell
division. [5, 7]

After passing all stages of erythropoiesis after four cell divisions and approximately
four days, in total 16 erythrocytes originate from a single proerythroblast [7].
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2.1.3 Myelopoiesis

Myelopoiesis is the development of myeloid effector cells. These are granulocytes,
which develop in a process called granulopoiesis, and monocytes and macrophages,
that evolve during monopoiesis [6].

A myeloid progenitor cell differentiates into a myeloblast, before it enters either
granulopoiesis or monopoiesis. These myeloblasts have diameters of 14 to 16 µm,
which makes them relatively large, and have a large nucleus with fine chromatin and
many nucleoli (see Figure 2.4(a)). In the basophilic cytoplasm, neither granules nor
a visibly pale area due to a Golgi-apparatus are present [7].

(a) Neutrophil (b) Eosinophil (c) Basophil

Figure 2.3: Segmented granulocytes from all three lineages. They all have a segmen-
ted nucleus with at least two segments, but differ in cytoplasm colour
and granulation and, due to the latter, nucleus visibility.

Granulopoiesis

If they enter granulopoiesis, myeloblasts differentiate into neutrophilic, eosinophilic
and basophilic lineages (see Figure 2.3), which differ in granulation colour [9]. Neut-
rophilic granulocytes, or short neutrophils, are relevant for the defence against
mainly bacterial infections, and constitute the dominant population of granulopoi-
etic cells in the bone marrow [9]. They have a segmented nucleus, with up to five
segments, and pink-blue or grey-blue granules are visible in the cytoplasm (Figure
2.3(a)) [4]. Eosinophilic granulocytes, or eosinophils, on the other hand have a role
in allergies and the defence against parasitic diseases. Their nucleus is segmented
into two segments, and the cytoplasm is eosinophilic, with red granules filling the
entire cytoplasm (figure 2.3(b)) [7]. Lastly, basophilic granulocytes, short basophils,
are also involved in the response to parasitic diseases and allergies. Their nucleus
is segmented into two parts as well, while the cytoplasm shows a blue or purple,
coarse granulation across the cell [7]. These dark, characteristic granules overlap
the nucleus (Figure 2.3(c)) [4], which therefore is barely visible, but slightly larger
than the nucleus of a neutrophilic or eosinophilic granulocyte [7].

All three lineages of granulopoiesis undergo the following stages of development,
as shown in Figure 2.4 for neutrophilic granulocytes.
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(a) Myeloblast (b) Promyelocyte (c) Myelolocyte

(d) Metamyelocytes (e) Band granulo-
cyte

(f) Segmented
granulocyte

Figure 2.4: Examples of neutrophilic granulocytes of different maturity from our
dataset. The sizes of cells and nuclei tend to decrease, and the initially
round nucleus becomes progressively indented and finally segmented.

Promyelocytes (Figure 2.4(b)) result from cell division of myeloblasts, so a relat-
ively sharp distinction is possible. In contrast to myeloblasts, they have a brighter
perinuclear region due to their Golgi-apparatus, and rough, red granules in the baso-
philic cytoplasm. The oval nucleus often shows nucleoli, with N/C ranging from 50
to 70 %. The next stage, entered after another cell division, are myelocytes (Figure
2.4(c)). These have smaller, reddish granules in a pink cytoplasm, while the oval
nucleus shows more condensed chromatin and usually no nucleoli. N/C is usually
between 40 and 50 %. [7]
After the next cell division, the cells are called metamyelocytes (Figure 2.4(d)),

which no longer divide and are smaller than myelocytes, with similar cytoplasm.
The nucleus is bean- or kidney-shaped, and N/C is approximately 30 %. Metamye-
locytes have many fine, but no coarse granules in their cytoplasm. They are further
classified into juvenile – often just called metamyelocytes – band and segmented
forms. Band granulocytes show a strongly indented, but not yet segmented nucleus
(Figure 2.4(e)). The nucleus is defined as segmented (Figure 2.4(f)), if the most
narrow connection between two wider areas is smaller than a third of the largest
nucleic diameter, otherwise it is accounted as a band form. For the band form, N/C
is approximately 20-30%, while it is around 20% for the segmented form, which has
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a cell size of approximately 14 µm. [4, 7]

Monopoiesis

Monocytes and macrophages develop during monopoiesis. These cells can perform
phagocytosis – which means they can ingest other bodies such as pathogens – present
antigens on their surface, and secrete cytokines. Monocytes develop from myelo-
blasts after undergoing stages called monoblast and promonocyte. With a large,
round nucleus and a large cytoplasm, monoblasts have a similar appearance as my-
eloblasts, so even though they tend to be slightly larger, they can easily be confused
with their precursor stage [7]. From a cell division, they emerge as promonocytes,
which have an indented nucleus with a horseshoe or kidney-like shape and light
blue cytoplasm with few, reddish granules (see Figure 2.5(a) for an example) [7].
The next stage are monocytes, which leave the bone marrow relatively quickly [7].
They have diameters between 15 and 20 µm, and their cytoplasm shows blue or
grey (Figure 2.5(b)) stain. It contains many fine vacuoles and often fine, reddish
granules, while the nucleus is large and indented and contains clumped chromatin.
The nucleus-to-cytoplasm ratio is around 30 % [7]. Monocytes can differentiate
into macrophages; however this does not happen in the bone marrow, but in other
tissues. Macrophages are larger than monocytes, have a blue cytoplasm, an oval
nucleus with well-visible nucleoli, and special vesicles to phagocytose pathogens. [4]

(a) Promonocyte (b) Monocyte

Figure 2.5: Examples of cells of monopoiesis from our dataset. The indented nucleus
is well visible.

2.1.4 Lymphopoiesis

The development of lymphocytes is called lymphopoiesis [6]. Lymphoid stem cells
originate from the haematopoietic stem cells located in the bone marrow [4], imma-
ture lymphocytes are also called lymphoblasts [5].
Lymphocytes are divided into B- and T-lymphocytes, which differ in their task

as well as the location of their maturation. First stages of the development of
B-lymphocytes, whose task is the production of antibodies, take place in the bone
marrow, where the lymphoid stem cells differentiate into pro-B- and pre-B-cells. The
task of T-lymphocytes on the other hand is to recognise specific antigens on cells.
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(a) Lymphocyte (b) Plasma cell

Figure 2.6: Examples for a lymphocyte and a plasma cell from our dataset. The
nucleus of the lymphocyte is large and round, while the Plasma Cell has
a relatively smaller and eccentric nucleus.

In contrast to B-lymphocytes, they migrate to the thymus in an early development
stage, from where they are released after maturation. [4]
Both types of lymphocytes have diameters between 8 and 10 µm [7], a single very

large, centrally located round nucleus with condensed chromatin with visible gaps,
and a pale basophilic cytoplasm (see Figure 2.6(a)) [6,7]. N/C is very large, it ranges
between 80 and 90 % [7].
B-lymphocytes can differentiate into plasma cells, whose task is the secretion of

antibodies [4]. They usually have diameters between 10 and 14 µm, and a dark blue,
basophilic cytoplasm (Figure 2.6(b)). Immature plasma cells have a centric nucleus
with 1 to 3 nucleoli, while the nucleus of mature plasma cells is eccentric with dense
chromatin with irregular brighter areas, and no visible nucleoli. [7]

2.1.5 Megakaryopoiesis

Megakaryocytes are the largest cells found in bone marrow, their development pro-
cess is termed megakaryopoiesis [4,5]. They produce thrombocytes (platelets), which
are small cell fragments of 3 to 4 µm in a process called thrombopoiesis [6]. Origin-
ating from haematopoietic stem cells [4], the first and smallest precursor of mega-
karyocytes is called megakaryoblast, which looks similar to myeloblasts [5], but is
larger with sizes ranging from 25 up to 50 µm. Megakaryoblasts have a very large,
centric nucleus with N/C beyond 50 % and non-condensed chromatin often contain-
ing nucleoli, while the cytoplasm is basophilic and has no granules. With diameters
ranging from 50 up to 150 µm, mature megakaryocytes are very large cells. The
nucleus is often strongly segmented and the cytoplasm is basophilic with red-purple
granules, which are the forming thrombocytes. [7]

2.1.6 Other Cells Found in the Bone Marrow

The previous sections gave an overview of physiological haematopoietic cells found
in the bone marrow. However, also some other cells outside of these haematopoietic
lineages, and some pathological forms of haematopoietic cells, can be found.
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Pseudo-Pelger forms of granulocytes occur in chronic myelogenous leukaemia
(CML) [5] or acute myelogenous leukaemia (AML) [4]. These granulocytes show
different sizes, and changes in segmentation [5,6], specifically being bi-segmented [7].
With reticulum cells, a whole group of heterogeneous cells is comprised. Of these,
many are members of the macrophage system or derived from blood monocytes. [5]
Mast cells are cells that produce histamine and heparin and can sometimes be found
as isolated cells in the bone marrow [5]. Presence of masts cells can indicate patho-
logies [7]. Osteoblasts are the stretched cells that synthesise the bone, and can also
sometimes occur in the bone marrow, mainly in children [5, 7].

2.1.7 Normal and Abnormal Frequencies of Cell Types in the
Bone Marrow

The relative frequencies of the individual cell types in bone marrow samples from
healthy individuals are shown in Table 2.1. The ratio of granulopoietic cells to
erythropoietic cells (GE-index) is normally 2.5-3:1 [7].

Cell type Mean relative frequency [%] 95% confidence interval [%]

Neutrophils 53.6 33.6 - 73.6
Myeloblasts 0.9 0.1 - 1.7
Promyelocytes 3.3 1.9 - 4.7
Myelolocytes 12.7 8.5 - 16.9
Metamyelocytes 15.9 7.4 - 24.7
Band forms 12.4 9.4 - 15.4
Segmented 7.4 3.8 - 11.0

Eosinophils 3.1 1.1 - 5.2
Basophils and mast cells 0.1
Erythropoietic cells 25.6 15.0 - 36.2

Proerythroblasts 0.6 0.1 - 1.1
Basophilic erythroblasts 1.4 0.4 - 2.4
Polychromatic erythroblasts 21.6 13.1 - 30.1
Orthochromatic erythro-
blasts

2.0 0.3 - 3.7

Lymphocytes 16.2 8.6 - 23.8
Plasma cells 1.3 0.0 - 3.5
Monocytes 0.3 0.0 - 0.6
Megakaryocytes 0.1
Reticulum cells 0.3 0.0 - 0.8

Table 2.1: Relative cell frequencies in normal bone marrow samples [6].

Pathologic Deviations from Normal Cell Counts

Pathologies can cause deviations from the normal relative and absolute frequencies
of cell types in bone marrow samples. One very important group of such diseases
are leukaemias, which are subdivided into acute and chronic forms. The main types
are the acute myelogenous leukaemia (AML), the chronic myelogenous leukaemia
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(CML), the acute lymphocytic leukaemia (ALL) and the chronic lymphocytic leuk-
aemia (CLL) [5, 7]. Acute leukaemias are characterised by an abnormal count of
immature blasts [4], in contrast to chronic leukaemias, where the cells do mature,
but in abnormal numbers or forms [7]. Clinical symptoms of acute leukaemias may
initially be anemia, infections due to the weakened immune defence, and haematoma
or bleeding due to reduced blood clotting, and, depending on the type, infiltration of
organs. Chronic leukaemias on the other hand often lack strong specific symptoms.
Among the first symptoms can be loss of appetite or weight, physical weakness and
often an increased size of the spleen. [9]

AML is characterised by an excessive number of myeloid blasts beyond 20 %
of all cells with a nucleus. These blasts show characteristic Auer rods, which are
needle-shaped, red inclusions in the cytoplasm. In ALL on the other hand, the B-
or T-lymphoblasts lack differentiation, mainly characterised by missing cytoplasmic
granulation and a red cytoplasm colour, and exceed 20 % of nucleated cells. [7]
CLL is characterised by an excessive number of mature, but defective B- or T-
lymphocytes (Lymphocytosis) in the peripheral blood, which is caused by defective
apoptosis, programmed cell death, and not by an increased cell division [6]. The
lymphocytes appear small [7]. In the bone marrow, CLL leads to an infiltration of
mature lymphocytes beyond 30 %, and later a suppression of normal haematopoiesis
[6].

Chronic Myelogenous Leukaemia

CML makes up to 15 % of newly diagnosed cases of leukaemia in adults, with an in-
cidence between 0.6 and 2 new cases per 100 000 inhabitants and year in Europe and
the United States. Adults are more often affected than children – the median age at
the time of a diagnosis is 64 – and men 1.4 (Europe) to 1.7 (USA) times as often as
women. CML is fatal if untreated. It has three phases, an initial and mostly asymp-
tomatic chronic phase, an acceleration phase and a blast phase, where the disease
has transformed into an acute leukaemia, characterised by a loss of differentiation
of the myeloid precursor cells. For diagnosis of CML in the chronic phase, even
though blood smear samples are better suited, there are abnormalities in bone mar-
row samples as well. Predominantly, increased frequencies of cells of granulopoiesis,
apart from neutrophilic also including basophilic and sometimes also eosinophilic
granulocytes, can be found, with relative frequencies of myeloblasts below 5 % of
all cells with a nucleus – in contrast to beyond 20 % in the acute blast phase. The
relative frequencies of immature forms are increased, however, in the chronic stage
the cells do maturate. Meanwhile, the number and morphology of erythropoietic
cells is normal. Consequently, the GE-index is shifted towards granulopoietic cells to
values beyond 10:1. Often an increased number of megakaryocytes can be observed,
with dysplastic forms called micromegakaryocytes, which have only a size similar to
promyelocytes and a round nucleus. Other dysplastic cells are not present. [1]
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2.2 Introduction to Deep Learning

In recent years, the concept of artificial intelligence and machine learning has become
more and more popular. Two main tasks solved by machine learning are classifica-
tion, where samples of any kind are assigned to one or multiple given classes, and
regression, where, instead of discrete classes, continuous numbers are predicted [10].
Over the years, many different machine learning algorithms and methods have been
developed. In image processing, artificial neural networks, in form of so called con-
volutional neural networks, have been very successful [2, 3, 11–13].

2.2.1 From a Single Neuron to Neural Networks

b+
∑

iwi · xi f(z)z y

b
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Figure 2.7: A single neuron with m+1 weighted inputs, includin a bias. The neuron
applies an activation function f to the weighted sum z of its inputs.

In analogy to biological neural networks [14,15], artificial neural networks consist
of a weighted interconnection of basic units, so called neurons [10]. If a network
contains no feedback, it is also called a feedforward neural network in contrast to
recurrent neural networks [16]. A neuron, in its most basic form, applies a certain
activation function to the weighted sum of all input signals [10]. Typically, this ac-
tivation function introduces non-linearity into the networks [16]. Neurons can have
an additional input in form of a bias. Figure 2.7 shows an illustration of such a
neuron. Formally, the bias is the weight for a constant additional input of 1. The
values of all weights, including the bias, need to be learned for a particular task.
Training is described in more detail in Section 2.2.3.

Multiple combined neurons comprise a layer. The most basic type of such a layer
is a fully connected layer, where each neuron is connected to every in- and output.
The operation conducted by a fully connected layer with m neurons can be written
as a matrix operation,

z =W · x (2.1)
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where x is an input vector with m + 1 entries, including a one for the bias, W is
a weight matrix of the format n × (m + 1) including the bias weight, and z is the
layer’s output with n entries. Finally, an activation function is applied to z:

y = σ(z) (2.3)

An commonly used activation function for multi-class classification is the softmax
activation, which is defined as

S(yj) =
eyj∑n
i e

yi
∈ (0, 1), j ∈ {1, ..., n}, (2.4)

where n is the number of classes. The output is a vector, and, since

n∑
j=1

S(yj) = 1, (2.5)

the individual components can mathematically be interpreted as the estimated class
probabilities. [16]

input
layer

hidden
layer

output
layer

x1

x2

x3

y1

y2

y3

y4

Figure 2.8: A simple feedforward network.

Figure 2.8 shows a simple feedforward neural network. All layers other than the
input and output layers are called hidden layers. A neural network consisting of
more than two or three layers, hence having at least one or two hidden layers, is
called deep. [16]
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2.2.2 Convolutional Neural Networks

An important special type of feedforward neural networks are convolutional neural
networks (CNNs) [17], which are commonly used when the data have a grid-like
topology, for example images. They employ a special convolution operation that is
performed by a moving window, which is called receptive field. This receptive field
of a specified size – usually much smaller than the input – scans the input step by
step, moving with an adjustable step size, called the stride. Mathematically, the
convolution operation in the image domain is defined as

Y (i, j) = (K ∗ I)(i, j) =
∑
l

∑
m

I(i− l, j −m) ·K(l,m), (2.6)

where I is the input, for example an image,K is the kernel, and Y is the output. Y
can be an image as well, with Y (i, j) being a single pixel at position (i, j). The kernel
describes the weights of the input elements in the receptive field, which have to be
learned by the network. The same kernel is used regardless of the position of the
moving window, which leads to a significant reduction of the number of parameters
compared to fully connected layers with the same number of inputs. As another
consequence, a translation – in contrast to rotation and scaling – in the input causes
an equal translation in the output. If the kernel size is not one, the convolution
operation leads to a reduction of the size of the output compared to the input. In
order to compensate for this, the input is often padded at the edges, usually with
zeros. [18]
A very common activation function in CNNs is the rectified linear unit (ReLU),

which is defined as

fReLU(x) = max(0, x). (2.7)

In ReLU, positive inputs are passed to the next layer, while negative values are
blocked and replaced by zero. [16,18]
If the input has multiple channels, for example three in an RGB image, the same

kernel can be used for each input channel. On the other hand, it is also possible to
have multiple kernels, causing the output to have more channels, called feature maps,
than the input. Following this principle, the data passed through a convolutional
network with multiple convolutional layers successively become smaller (if there is no
padding) and deeper. Another way to reduce the size of the data being passed from
one layer to the next is pooling. Common examples are taking the maximum (max-
pooling), the minimum or the average value in a non-overlapping moving window. A
classification network usually consists of multiple convolutional and possibly pooling
layers together with a few fully connected layers at the end. [16,18]

2.2.3 Training of Neural Networks

Losses

In a supervised training scenario, the network is presented with examples of known
classes. These samples are passed through the network and the output is observed.
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The basic quantity to evaluate the quality of a neural network, not only during train-
ing, is the error, which is estimated by a so-called loss, quantifying the correctness
of the observed output of the network. One very common loss for regression and
binary (two-class) classification is the mean squared error (MSE), which is defined
as

LMSE =
1

N

N∑
i=1

(yi − ti)2 (2.8)

where yi is the network output, i.e. the predicted label in case of classification or
the estimated value in case of regression, and ti is the target, i.e. the true label
or value, which is known during training. For classification, often the cross-entropy
(CE) loss is used, which in the multi-class case with n classes is defined as

LCE = − 1

N

N∑
i=1

n∑
c=1

ti,c · log(yi,c). (2.9)

This means that, if the target is 1 for one single class c̃ and 0 otherwise, only the
output yi,c̃ is relevant for the loss. The overall loss is the average of these contribu-
tions over all samples. Depending on the particular task and network architecture,
there are many other possible loss definitions, which often have to be engineered for
the particular task. [16]

Backpropagation and Weight Updates

During training, the weights of the neural network are updated based on the loss
on the current samples. To determine appropriate adjustments of the weights, a
backpropagation of that loss is performed. In order for this to work, it is important
that the weights of the network are initialised for example randomly in a small
interval around zero [10].The problem of initialisation is discussed more thoroughly
in Section 3.1.3.
Backpropagation of the loss involves the calculation of its partial derivative with

respect to the individual weights

∂L
∂wi

. (2.10)

Since the weights can be represented as a vector, this can also be written as a
gradient of the loss ∇wL. In a gradient descend, the goal is to decrease the loss by
moving in the direction of the negative gradient [18] In vector notation, the weights
are updated according to

wnew = wold − α · ∇wL, (2.11)

where α is the so-called learning rate, which is a positive scalar [18] hyperparameter,
which has to be selected very carefully. A large learning rate can make training
faster, but might cause suboptimal results, because the influence of an individual
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2.2 Introduction to Deep Learning

learning step can become too big. On the other hand, a low learning rate makes
training slower and more prone to become stuck in a local minimum [16].
In an attempt to avoid getting stuck in local optima, there are several approaches,

including adaptive learning rates – usually α is decreased during training – and an
extension of the gradient descent with momentum [10]. One popular algorithm
based on the latter idea is adaptive moment estimation (Adam) [19], which uses
two moments, an estimate of the first moment (the mean) and an estimate of the
second moment (the variance) of the gradient. For this purpose, moving exponential
averages are used, where the two additional parameters β1, β2 ∈ [0, 1) control the
exponential decay rate of these averages.

Dataset Splits

In practice, the number of samples available to train neural networks is usually
limited. Often the data are divided into three disjoint sets: The training set, the
validation set and the test set. While the actual training is only performed on the
training set, possibly repeatedly in multiple epochs, the other two sets are used
solely for evaluation. This is necessary because of the effect of overfitting, which
occurs when the noise in the training data is modelled. In case of overfitting, the
performance on the training data is very high, but the model does not generalise
well to unseen data [10]. The validation set is used to track the performance of
the network during training by measuring the loss on unseen data. It is often used
to find an appropriate stopping point of the training, as an alternative to a much
more naive stopping after a fixed number of epochs, or to select the best-performing
model state that occurred during training. In many cases, it can be observed that
during training the validation loss reaches a minimum and then begins to rise again
due to overfitting, indicating that from this point the model loses its capability to
generalise [10]. The test set on the other hand is used only for the evaluation of the
final, trained and selected network. This third set is required to obtain an unbiased
measure, which the validation set cannot provide, because it has already been used
for model state selection. [16]

Practical Optimisation Techniques

Often, the samples are passed to a neural network in batches of multiple samples,
instead of the entire training set at once. This method is called stochastic gradient
descent. Stochastic gradient descent often converges much quicker compared to full
gradient descent, because the random samples frequently allow a good approxima-
tion of the overall gradient. However, it might fail in cases where the gradient is
not very steep [16]. In batch-wise training, it is advisable to shuffle the training set
such that successive examples are most likely dissimilar. Additionally, it is useful to
normalise the inputs by element-wise subtraction of the mean µ of the whole dataset
(or training set) and then scaling the input variables such that the covariances are
similar by division by the standard deviation σ of the dataset:

xnorm =
x− µ
σ

(2.12)
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Normalisation removes a potential bias of weight updates and ensures equal contri-
bution of all input variables. [20]
To address a similar problem within the network, batch normalisation [11] can

be employed, which is batch-wise normalisation of the input of a layer. Batch
normalisation addresses the problem that a layers’ input distribution changes due
to changes of all previous layers during training.

2.2.4 Evaluation of the Performance of a Classifier

Not only in deep learning, but for any classification approach, one or multiple mean-
ingful measures are required to objectively evaluate a classifier’s performance. Such
a measure is important because of multiple reasons – firstly to (at least approx-
imately) know the reliability of the output when working with a trained model in
general, and secondly for model selection, either between different alternative mod-
els, or to select the best model state that occurred during training based on the
performance on the validation set [10].

For each example of a class in the dataset, the classifier can either correctly predict
it to be a member of this class, giving a true positive (TP) result, or falsely predict
another class, leading to a false negative (FN) result. Conversely, every sample of
all other classes can either be predicted to be of (any) other class, leading to a true
negative (TN) result with respect to the considered class, or be predicted as member
of the class, meaning that the prediction is false positive (FP).
The overall results can be represented by a confusion matrix [21], in which an

entry at position (i, j) represents how often a sample from class i has been predicted
to be member of class j. Diagonal entries (i = j) represent the number NTP,i

of true positive predictions. The sum of all non-diagonal entries in row i is the
number NFN,i of false negative predictions, assuming that rows correspond to the
true and columns to the predicted class. Conversely, the sum of non-diagonal entries
in the j-th column NFP,j represents the number of false positive outcomes for the
corresponding class. Lastly, NTN,i of class i can be calculated as the sum of all
entries that are located neither in the i-th row, nor in the i-th column. From these
numbers, different evaluation measures can be calculated.

Accuracy and Error Rate

The two most basic measures for the performance of a classifier are the accuracy
and the error rate. The accuracy is defined as the relative amount of correct classi-
fications. For general multi-class classification, it can be written as

accuracy =

∑n
i=1NTP,i∑n

i=1NTP,i +
∑n

i=1NFP,i
. (2.13)

The error rate is defined as

error rate = 1− accuracy (2.14)
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and describes the relative frequency of errors with respect to the total number of
predictions [10].

F-score

The approach of using error rate and accuracy as the only measures of a classifier’s
performance can be problematic, especially in case of a significant imbalance in
the dataset between the number of examples from the individual classes. If there
are relatively few examples of a certain class, a classifier that never predicts this
class is practically useless, but still achieves a high accuracy. In such cases, more
appropriate measures are precision and recall, and derived from these, the F-score.
The precision of a classifier

precision =
NTP

NTP +NFP
(2.15)

is defined as the relative amount of positively classified samples which are indeed
positive. On the other hand, the recall

recall =
NTP

NTP +NFN
(2.16)

describes the relative number of positive examples that are classified as such. Now,
if there is a class imbalance and the classifier never predicts a small class, precision
and recall would be low (or undefined) for that class, even though the accuracy
would be high and the error rate low. [10]

Depending on the particular task, the precision might be more important than
the recall, or vice-versa. A single measure that combines precision and recall is the
F-score

Fβ =
(β2 + 1) · precision · recall
(β2 · precision) + recall

. (2.17)

The parameter β ∈ [0,∞) allows to weigh precision and recall: If β > 1, recall is
given a higher importance, while for β < 1 the precision is emphasized. Often, β is
simply chosen as 1, leading to the F1-score

F1 =
2 · precision · recall
precision+ recall

. (2.18)

The F1-score can be generalised in two ways to multi-class classifications – the
micro-averaged and the macro-averaged F1-score. Calculating precision and recall
from the overall numbers of correct and incorrect classifications

precisionmicro =

∑n
i=1NTP,i∑n

i=1 (NTP,i +NFP,i)
(2.19)

recallmicro =

∑n
i=1NTP,i∑n

i=1 (NTP,i +NFN,i)
(2.20)
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leads to the micro-averaged F1-score

F1,micro =
2 · precisionmicro · recallmicro

precisionmicro + recallmicro
. (2.21)

From averaging of all individual decisions, it follows that the micro-averaged F1-
score implicitly assigns a higher weight to classes with more examples. In fact, in
the most common case where each sample is classified into exactly one class, the
micro-averaged F1-score is equivalent to the accuracy 2.

Because of the weaknesses of the micro-averaged F1-score in case of class imbal-
ances, often the macro-averaged F1-score is preferred, which is defined as

F1,macro =
1

n
·

n∑
i=1

F1,i. (2.22)

The F1-scores of all n classes are averaged directly, consequently all classes have the
same importance.

2see Appendix A.1 for proof.
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While the previous chapter has given important, but general background know-
ledge about haematopoiesis and deep learning, this chapter introduces more specific
state-of-the-art methods. In Section 3.1, two very successful network architectures
are described in detail. Section 3.2 addresses the application of machine learning
methods on a hierarchical domain, while Section 3.3 gives examples of prior work
employing some kind of cascade of neural networks. Section 3.4.1 gives a brief
introduction to clustering, focusing on spectral clustering algorithms. Finally, Sec-
tion 3.5 provides more information about relevant prior work and findings of our
haematology project.

3.1 Successful Deep Learning Architectures

In this work, two established deep learning architectures are used that have shown
the most promising results on our dataset in previous investigations [3]. When
comparing neural network architectures, it is common to evaluate their performance
on benchmark datasets. One example for such a benchmark is the ImageNet Large
Scale Visual Recognition Competition (ILSVRC) with approximately 1.2 million
training images, 50 000 validation and 100 000 test images from 1000 classes, ranging
from different animals over food to objects like vehicles or electronics [22, 23]. The
performance on the ImageNet dataset is usually reported in terms of the top-1 error-
rate, measuring the rate of cases where the correct class has not been assigned the
highest confidence by the network, and the top-5 error rate, which is the relative
frequency of cases where the correct class is not among the 5 classes with the highest
predicted probability. The two architectures introduced in the following are ResNet
(Section 3.1.1) and DenseNet (Section 3.1.2).

3.1.1 ResNet

Late 2015, He et al. introduced the idea to include residual connections within deep
networks to overcome problems of performance degradation when networks become
too deep. The resulting network architecture is called ResNet [12].
Its basic building block, as shown in Figure 3.1, comprises of two successive convo-

lutional layers, and a shortcut connection, which skips both of these layers. Altern-
atively, to reduce training time, the building blocks may consist of three layers, with
reduced dimensions in the intermediate so-called bottleneck layer. Regardless which
building block design is used, the input is simply added to the output of the two
successive layers, without being modified apart from dimensions matching. Within
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Figure 3.1: Basic building block of a ResNet. Via skip connections, the input is
added to the output. Source: [12]

the ResNet, at some points downsampling is performed by application of a stride of
2. At these points, the number of filters is doubled, while the feature map size is
halved. Consequently, due to the dimension mismatch, the residual connection has
to be adjusted, either by padding or by using a linear projection, implemented with
1× 1 convolutions.

ResNets allowed to train deeper networks than before. As a consequence, ResNets
have been very successful, for example on ILSVRC, on which, when they were pub-
lished, ResNets of different depths achieved lower error rates (top-1-error-rate: 19.38
% and top-5-error-rate 4.49 % with a depth of 152) than any previous contender.
Common depths for ResNets are 18, 34, 50, 101 or 152, the corresponding numbers
and types of building blocks are given in Figure 3.2. Additionally, the number of
operations performed by the network (FLOPs) is stated, assuming classification on
the ImageNet dataset with images of size 224× 224 belonging to 1000 classes. Re-
gardless of the depth, the networks contain one convolutional layer with a kernel
size of 7 × 7, followed by 4 parts comprised of the basic building blocks, and are
concluded by a single fully connected layer followed by a softmax activation. [12]

3.1.2 DenseNet

In 2017, Huang et al. published an architecture called DenseNet [13], which also
involves skip connections to allow particularly deep networks. However, in contrast
to ResNets, DenseNets have multiple shortcut connections from every block not only
to the next, but to all successive layers within blocks. The basic building block of a
DenseNet consists of a sequence of batch normalisation, ReLU and convolution, to
which, as in ResNets, an additional bottleneck layer can be added. The principle of
a dense block is illustrated in Figure 3.3
Each dense block with L layers contains L(L+1)

2
connections. Within these so-

called dense blocks, all feature maps have the same dimensions, however, between
the dense blocks there are transition convolutional and pooling layers, which reduce
the feature map sizes. A key distinction to ResNets is that in DenseNets the inputs

22
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Figure 3.2: Possible ResNet configurations when applied on ImageNet. All variants
have in common that they consist of 5 blocks. The individual cells show
the basic building blocks in brackets together with their number. Source:
[12]

and outputs are concatenated, and not added. Due to this concatenation, the lth
layer within a dense block has

k0 + k · (l − 1) (3.1)

input feature maps, where k is the growth rate, a parameter that can be relatively
small (for example k = 32). Consequently, the individual layers in DenseNets can
be narrow, meaning the number of filters is relatively low. Because of the additional
shortcut connections, feature maps learned in early network layers do not need to be
re-learned by later layers, reducing feature redundancy and allowing for a decreased
number of parameters. Conversely, while the performance in the ImageNet challenge
has been similar to ResNets (top-1-error-rate: 20.80 % and top-5-error-rate 5.29 %),
DenseNets achieved these results with significantly fewer parameters. Figure 3.4
shows the architectures of DenseNets in more detail, when applied to classification
on the ImageNet dataset with 224× 224 images from 1000 classes. Common depths
are 121, 161, 169 and 201. There are certain similarities to the ResNet architecture
(Figure 3.2): In both architectures, all variants consist of four blocks, comprised of
the respective basic building block, and similar first and final layers. [13]

3.1.3 Weight Initialisation and Transfer Learning

As already mentioned in 2.2.3, it is important to initialise the weights of the neural
network before training. While an initialisation with zeros would prohibit any
convergence, too large initial weights which lead to saturation in an output sig-
moid would lead to very small gradients and therefore slow training. Ideally, every
neuron’s weights should be selected randomly with zero mean, and the standard
deviation σw = m−1/2, where m is the number of inputs to a certain unit. [20]
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Figure 3.3: Illustration of a dense block with a growth rate of k = 4. Each layer
gets the concatenated feature maps of all previous layers as its input.
Source: [13]

Another way a neural network’s parameters can be initialised is to adopt the
weights of another network with the same architecture which has already been
trained on a different dataset [24]. This is called transfer learning.
In case of insufficient training data, starting from a model which is pretrained on

a large-scale dataset can improve the network’s performance. Especially features
learnt in early layers of a network, such as edges or corners in images, are simple
but universal. Exploiting this, transfer learning can both speed up the training and
also be helpful especially in cases of insufficient training data, even when pretrained
on a very different domain [24,25].
One commonly used dataset for pre-training is the ILSVRC dataset [22,23]. Even

though, naturally, it would be preferable to perform the pretraining with data from
a similar domain, transfer learning based on the heterogeneous ImageNet dataset
has successfully been utilised for many different tasks.

3.2 Hierarchical Classification

3.2.1 Basic Terminology and Task Definition

Task Definition

In a 2010 survey, Silla and Freitas [26] defined hierarchical classification as classific-
ation given a pre-defined taxonomy, either in form of a tree, where every node has
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Figure 3.4: Possible DenseNet configurations when applied on ImageNet. All vari-
ants have in common that they consist of 4 blocks. The individual cells
show the basic building blocks in brackets together with their number.
As conv, a sequence of batch normalisation, ReLU and convolution is
abbreviated. Source: [13]

at most one parent, or a directed acyclic graph (DAG). Formally, such a taxonomy
can be defined as a partially ordered set (C,≺) using the "is-a" operator ≺, as was
done in 2005 by Wu et al. [27]: Let C = {c0, ..., cn} be the set of classes ordered
within a tree, and let c0 denote its only root. Then it holds

∀ci ∈ C\{c0} : ci ≺ c0, (3.2)

meaning that all other classes are at the same time also members of the root class
c0. Furthermore, the operation is defined as anti-reflexive

∀ci ∈ C : ci ⊀ ci (3.3)

and transitive

∀ci, cj, ck ∈ C : ci ≺ cj and cj ≺ ck ⇒ ci ≺ ck, (3.4)

which means that if cj is an ancestor of ci, all ancestors of cj are also ancestors of
ci. Extending this definition, Silla and Freitas [26] require the "is-a" relation to be
asymmetric

∀ci, cj ∈ C : ci ≺ cj ⇒ cj ⊀ ci, (3.5)

assuring that the tree or DAG is acyclic.
When classifying within such a taxonomy without allowing inconsistencies, every

assigned class ci implicitly also assigns the partially ordered set (Ci = {ci} ∪ {cj ∈
C : ci ≺ cj},≺), because when classifying into a class, the sample is implicitly
also classified into all of its ancestor classes because of the properties of the "is-a"
operation. The set Ci is called the structured label, or multi-label, containing all
assigned labels, the root being the most general and the leaves representing the most
specific labels [27].
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Local and Global Approaches in Contrast to Flat Classifiers

Given a taxonomy, there are different approaches to incorporate its information [26].
In global approaches, the entire hierarchy is taken into account, but its knowledge
is used to learn a single classifier, while local approaches apply several local clas-
sifiers to propagate through the tree or DAG. Consequently, local approaches have
the advantage of modularity, because of the separate local classifiers, which can be
selected and trained individually. A flat classification method on the other hand
ignores the relationships between classes completely, in many cases just predicting
the leaf nodes of the taxonomy. In comparison to individual local classifiers, this
usually means that the classifier has to deal with more possible classes at once.

(a) One classifier per node (b) One classifier per parent

(c) One classifier per level

Figure 3.5: Visualisation of the three approaches to local hierarchical classification.
Circles represent classes, with R indicating the root, while dashed boxes
show the position of classifiers. In contrast, global approaches incorpor-
ate the domain knowledge by other means, while a simple flat network
just considers the final classes, i.e. usually the leaves, in a single classi-
fier. Source: [26]

Local approaches to hierarchical classification can be one of three types, shown in
Figure 3.5. The first possible method is to have one binary classifier per node (Figure
3.5(a)) except for the root. Each local classifier then performs a binary classification,
predicting whether or not a given sample belongs the node’s class. Another approach
is to establish one multi-class classifier per parent (Figure 3.5(b)), which predicts
to which of its children a sample belongs. This leads to fewer – although there is a
classifier at the root now, the leaves have no classifier anymore – but more complex

26



3.2 Hierarchical Classification

classifiers, which have to take different numbers of classes into account. The third
possibility, further decreasing the number of classifiers, is to have a single multi-class
classifier per level (Figure 3.5(c)) across all branches.
In all these approaches, the prediction is usually performed using a top-down

propagation through the hierarchy. Starting from the root, the sample is at first
assigned to more general classes, before moving to the most specific classes repres-
ented by the leaves. Because of this stepwise approach, it must be noted that in
general, depending on the exact implemented decision strategy, this approach can
be sensitive to error propagation – in case whole branches are neglected because
of a high-level classification. It can also lead to class inconsistencies, contradict-
ing the transitivity (3.4) due to assigning labels from different branches at different
nodes. [26]

3.2.2 Hierarchical Evaluation Measures

Given a taxonomy, it is possible to adjust the evaluation metrices to account for
different levels of correctness of a prediction. In many cases, it is much better to
misclassify two very close examples than samples from more distant classes in the
hierarchy. For example, classifying a cat as a dog still implies that the object is an
animal, while predicting a cat to be a car would potentially be much worse. Classical
evaluation measures for flat classification, such as the F-score, cannot distinguish
between misclassifications between close and distant classes. Similarly, standard
classification losses such as the cross-entropy loss do not distinguish how far off a
misclassification really is. Therefore, it makes sense to also consider other evaluation
metrices and losses.

In 2005 Kiritchenko et al. [28] defined a hierarchical F-score. Given a DAG or a
tree, they defined the micro-averaged hierarchical precision as

hP =

∑N
i=1 |Ĉi ∩ Ĉ ′i|∑N

i=1 |Ĉ ′i|
(3.6)

and the micro-averaged hierarchical recall as

hR =

∑N
i=1 |Ĉi ∩ Ĉ ′i|∑N

i=1 |Ĉi|
, (3.7)

where Ĉi = Ci\{c0} and Ĉ ′i = C ′i\{c0} are the true and predicted multi-labels of the
i-th sample, excluding the root. In other words, hP measures the relative amount of
correctness of the predicted multi-label, while hR quantifies the correctly predicted
fraction of the true multi-label. From hP and hR, the hierarchical F-score can be
calculated as usual:

hFβ =
(β2 + 1) · hP · hR
β2 · hP + hR

, β ∈ [0,∞) (3.8)
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3.2.3 Hierarchical Losses

To incorporate the hierarchical knowledge not only into evaluation, but already into
training, some researchers also introduced hierarchical losses. In an article published
in 2006, Cesa-Bianchi et al. [29] proposed a very simple loss called, h-loss. For the h-
loss, the tree is propagated from the root and whenever there is a mismatch between
the correct and the predicted – not necessarily consistent – multi-label, the loss is
increased by one and the propagation of the current path is stopped. In 2019, Wu et
al. [30] proposed a different hierarchical loss for the special case of ultrametric trees,
which are trees where every leaf has the same number of ancestors. They define the
win of a prediction from the probabilities for all nodes, as given for example by the
output of a Softmax function, weighted by 1/2depth. By counting the leaves twice,
the weights sum up to one. The loss is then simply defined as the negative win,
or alternatively its logarithm. However, in their article, the authors come to the
conclusion that this loss is not well suited for plain classification training, but may
be more beneficial when optimised using a hierarchical training process.

3.3 Cascades of Neural Networks

Already in 1993, Poddar and Rao [31] employed a hierarchical ensemble using neural
networks as per-parent local classifiers, following a Bayesian approach to estimate a
posteriori probabilities of the classes. Individual, simple neural networks are trained
for particular classification sub-tasks. This training is performed only on the for this
sub-task relevant subset of the dataset. Using the Bayes rule, propagation through
the network is then carried out recursively: Let Ci be the multi-label of a non-root
node (i 6= 0), and Cj = Ci ∪ {cj} the multi-label of one of its children, and let x be
a data sample to be classified. For any direct child k of the root, the estimate for
P (Ck|x) is directly taken from the root’s network output. Given an input x, the a
posteriori probability assigned to all other nodes Cj is calculated as

P (Cj|x) =
P (Cj,x)

P (x)
(3.9)

=
P (Cj,x, Ci)

P (x)
, because Ci ⊂ Cj (3.10)

=
P (Cj|x, Ci) · P (Ci,x)

P (x)
(3.11)

= P (Cj|x, Ci) · P (Ci|x). (3.12)

By training the individual networks only on their relevant subset, their output can
be viewed as a direct estimate of P (Cj|x, Ci). Furthermore, the authors showed
that, in principle, such a neural network is equivalent to another, single neural net-
work, however, for neural networks that are not deep, they found that their approach
outperformed such a single network in terms of both required time for training and
classification error.
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The idea of using a cascade of much more complex deep neural networks is, how-
ever, not very common. Nevertheless, there are some examples where deep neural
networks are cascaded for other tasks, with similar ideas how they are trained and
how outputs are combined.
In 2014, Girshick et al. [32] published their method called R-CNN for object

detection. Region proposals, obtained by any suitable method, are given to a con-
volutional neural network, which then performs feature extraction. These features
are finally fed to a classifier. In 2015, Girshick published an improvement which
he called Fast R-CNN [33], where the classifier is a feed-forward neural network
consisting of several fully connected layers, leading to a cascade of two neural net-
works. In the same year, Ren et al. [34] proposed to use a region proposal network,
so that there is a neural network at every step, which however share convolutional
layers. Training of the region proposal network and the Fast R-CNN detection net-
work is done in an alternating fashion, which consists of four steps. The first two
steps involve separate training of the region proposal network and the detection
network. Finally, in steps three and four, the networks share convolutional layers
which are then fixed. During these training phases, only the layers unique to first
the region proposal and lastly the detection network are fine-tuned to optimise the
overall performance.
In 2017, Sobokrou et al. [35] published a casade of Deep Neural Networks used for

anomaly detection and localisation in crowded scenes, which employs a similar idea
as Faster R-CNN. Their approach involves two major stages. As a first step, a deep
autoencoder detects a large number of initial region proposals. These proposals are
then resized and fed to a deep convolutional network for affirmation or rejection.
Additionally, both of these networks are cascaded in themselve, having weak gaussian
classifiers at the output of intermediate layers.
Also in 2017, Schlemper et al. [36] developed a cascade of deep convolutional

networks for reconstruction of undersampled sequences of magnetic resonance im-
ages. Their approach involves successively concatenating neighbouring samples and
feeding them through a series of neural networks to perform de-aliasing and image
reconstruction. The individual networks in this approach are a series of convolu-
tional layers, bypassed by a single shortcut connection, so that the input is added
to the output of the final layer of each network.

3.4 Other Machine Learning Methods

In this section, two machine learning algorithms are introduced, which are relevant
for some parts of this work. These algorithms are spectral clustering and UMAP.

3.4.1 Spectral Clustering

Clustering as a machine learning task is defined as grouping unlabelled objects into
disjoint subsets, or clusters, such that samples within clusters are as similar as pos-
sible, while samples from different clusters are dissimilar. There are several popular
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and relatively simple clustering techniques, such as k-means [37,38] or its nonlinear
variants like kernel k-means , or the expectation maximisation algorithm [39]. An-
other popular clustering algorithm is spectral clustering [40].

The input to a spectral clustering algorithm are a symmetric similarity matrix
S ∈ Rn×n and the number k of clusters to be found. From S, an undirected
similarity graph G = (V,E) with a weight matrix W ∈ Rn×n is built. S should
model the local neighbourhoods only. This can be done by different means, for
example by using heuristics like an ε-neighbourhood or connecting a node only with
a specified number of nearest neighbours, or by having a fully connected graph with
distances according to S. In this graph, each node has a certain degree

di =
n∑
j=1

wi,j, (3.13)

which can be written in a diagonal degree matrix D with entries d1, ..., dn on the
main diagonal, and zeros in all other positions. [40]
In the next step, the Laplacian matrix

L =D −W , (3.14)

is calculated from W and D. There are different variants of spectral clustering,
with the main distinction between unnormalised and normalised [41,42] variants. In
the unnormalised version, the next step is to calculate the first k eigenvalues and
eigenvectors u1, ...,uk of L [40]. In the normalised spectral clustering according to
Shi and Malik [41], the generalised eigenproblem LU = λDu is solved instead. Re-
gardless of which version of the algorithm is used, an eigenvector matrix U ∈ Rn×k
is built from the first k eigenvectors with the smallest eigenvalues, which are inser-
ted as the columns. U represents a transformed space, in which then the actual
clustering is performed for example using k-means for every row of U representing
one sample. [40]

Often, the number k of clusters is not known in advance. In this case, there is
a useful heuristic that can help to decide on how many clusters to search for – the
eigengap heuristic. When looking at the sorted eigenvalues, the goal is to choose k
such that λ1, ..., λk are close to zero, while λk+1 is significantly larger. [40]

3.4.2 UMAP

The goal of dimensionality reduction is to represent high-dimensional data in a low-
dimensional space while preserving certain characteristics, such as clusters. Uniform
Manifold Approximation and Projection (UMAP), introduced by McInnes et al. in
2018 [43], is a non-linear algorithm for this task. It is based on Riemann geometry
and algebraic topology and involves two phases. In the first step, a weighted k-
neighbourhood graph is created, connecting samples that are similar in the high-
dimensional space. Afterwards, a low-dimensional layout of this graph is computed
in a second step.

30



3.5 Previous Work and Findings of the Haematology Project

3.5 Previous Work and Findings of the
Haematology Project

As already mentioned in the introduction (Chapter 1), this work is part of a haemat-
ology project at RWTH Aachen University. The goal of this project is to determine
the distribution of the different cell types in whole slide bone marrow images. In the
following, some of the relevant previous work connected to this project is introduced.
In 2018, different approaches for classification of cell images from our dataset

were tested and compared. Apart from deep learning in form of a pretrained Res-
Net with depth 18 and 152, classical approaches that involve a feature extraction
and a classification step were evaluated. Different features such as the histogram of
oriented gradients [44] and local binary patterns [45] as well as features extracted
by convolutional networks, particularly ResNet-18 and ResNet-152, were evaluated.
The classifiers that were applied on these features were linear [46] as well as radial
basis function support vector machines [47], random forest classifiers [48] and Ada-
Boost [49]. Among all these methods, the deep learning approach outperformed the
classical approaches in terms of the (logarithmic) F-score. [2]

(a) Original (b) Rotation (c) Mirroring (d) Cropping

Figure 3.6: Visualisation of the three approaches to data augmentation that yielded
the best results in prior examinations [3].

A deeper analysis of the application of single deep networks on our dataset, in-
cluding the evaluation of different hyperparameter setups, was performed in 2019 [3].
Out of several different compared setups, DenseNet-121, closely followed by ResNet-
152, performed best, while deeper DenseNets performed worse possibly because of
stronger overfitting on the used subset of our dataset. In the same work, different
further optimisation techniques were examined. Transfer learning based on networks
pretrained on the ILSVRC dataset have proven to significantly improve the results
and it was shown that the weights especially of early layers, providing the most
general features, barely changed from that pretrained state. For the learning rate,
it was shown that in this setting, values in the range 10−4 down to 10−6 gave the
best results while not prolonging the training too extensively. Analysis showed that
the influence of the batch size is not very large for batch sizes between 4 and 64. To
partly improve training given the relatively small dataset, it was shown that simple
image transformations for data augmentation [50] can help to improve the classific-
ation performance. Successful strategies were mirroring the image in the vertical or
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horizontal direction, rotation around a random angle, and cropping the image with
a small, random displacement, effectively slightly translating the cell within the im-
age. Examples for these transformations are shown in Figure 3.6. Counteracting
the large class imbalance, weighted cross-entropy loss (WCE), where each class re-
ceives a weight [51] based on its inverse frequency, was shown to slightly increase the
performance of the classifier. Other methods that were analysed, but did not im-
prove the results, were undersampling of overrepresented classes, and oversampling
of underrepresented classes.
Another, unpublished work in 2019 showed that, in principle, it is possible to

apply regression instead of classification for maturity estimation in a specific lineage,
in this case neutrophilic granulocytes. It can be converted into classification by
thresholding. This approach, by exploiting the ordinal character of these specific
class labels, proved to reduce the confusion between more distant maturation stages.
For automated detection of cells in whole slide images, a neural network based

on the successful RetinaNet architecture [52] is used, however using circular anchors
instead of rectangular bounding boxes to improve detection accuracy. In case of over-
lapping anchors, a strategy called Area-based Nonmaximum Suppression is employed
to reduce the number of false positives. If a candidate area overlaps with another
area, such that the relative overlap exceeds a certain threshold, and if its confidence
is lower than the confidence of the area it overlaps with, it is discarded. [53]
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4 Neural Network Cascades

The methods and principles developed in this work are introduced in this chapter.
In Section 4.1 the haematology dataset is introduced and analysed. Section 4.2
provides an overview over the hierarchical classification approach using deep neural
networks employed on these data. Within section 4.2, two alternative ways to tra-
verse through a hierarchical cascade of neural networks are described in 4.2.2. Next,
the training strategies for such a cascade are discussed in Section 4.3, before Section
4.4 introduces several different classification hierarchies for the haematopoietic do-
main. A cascade of networks instead of a single, flat classifiers allows more diversity,
for example by using regression for certain sub-tasks. This possibility is covered in
Section 4.5. Different options to employ transfer learning to a cascade of multiple
networks are discussed in Section 4.6. In Section 4.7, common convolutional blocks
which can be shared between different networks are defined. Section 4.8 briefly cov-
ers methods to compensate class imbalance, and how they are used in the context
of a cascade of multiple neural networks. Section 4.9 introduces feature forwarding,
an approach to connect the otherwise independent networks using skip connections.
Finally, in Section 4.10, a macro-averaged hierarchical F-score for model evaluation
is defined.

4.1 Data Analysis

In this work, classification is performed on a dataset of haematological images,
with the goal to incorporate specific domain knowledge about this dataset into the
classification process. A brief overview over the entire dataset, its acquisition and
basic properties is given in Section 4.1.1. Relevant implications for this work in
particular, including the exclusion of certain cell types and the resulting class sizes,
are discussed in 4.1.2.

4.1.1 Dataset

At the time this work is carried out, the dataset contains eight (partly) annot-
ated bone marrow smears, acquired with a magnification of 63 with immersion
oil. Figure 4.1 shows an example of such a whole slide image. Samples are ac-
quired, pre-processed and digitised by the Department of Haematology, Oncology,
Haemostaseology and Stem Cell Transplantation at the University Hospital of the
RWTH Aachen University. The samples are Pappenheim stained, allowing a good
distinction between cell nuclei and cytoplasm. For classification, image patches of
adjustable size can be extracted from the whole slide images. Individual patches
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Figure 4.1: Whole slide image of a bone marrow smear.

are centred around the cell to be classified, but frequently also contain neighbour-
ing cells. In some cases on the other hand, depending on the patch size, the patch
might not contain the entire cell. Practically this is mainly the case for cells of
megakaryopoiesis due to the very large cell sizes. The slices have been annotated
by medical experts, however, to obtain a reasonably large dataset given the limited
resources, an inter-rater study to validate those annotations has not been performed
yet. The labels are given in a hierarchy motivated by the actual cell lineages (com-
pare Figure 2.1), however with some practical modifications. These modifications
are done in medical practice to simplify the annotation process. For example, for
eosinophilic and basophilic granulocytes the cells are divided only into immature and
mature cells rather than the individual maturity stages, because this is often suffi-
cient for diagnosis and because these cells are significantly less frequent compared
to neutrophilic granulocytes. In Pappenheim stain, myeloblasts, lymphoblasts and
monoblasts cannot be distinguished reliably and are therefore merged into a single
class called blasts, while proerythroblasts are more easily distinguishable and there-
fore labelled as such. Blasts are further separated into physiological ungranulated
blasts and granulated blasts, which can occur for example in case of leukaemia. In
Table 4.1 the number of cells of each type is listed.

4.1.2 Data Selection

As indicated in Table 4.1, the dataset is highly unbalanced, with some classes hav-
ing only very few samples. For experiments, such low numbers of samples are not
suitable, therefore, some classes have to be merged or excluded. These considera-
tions are important already for method design because the hierarchical classification
naturally is very much dependant on the classes that are present within the class
taxonomy. The goal of these adjustments is not to balance the dataset, but to ensure
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Cell type Number of samples

Myeloblasts 130
Ungranulated (physiological) myeloblasts 76
Granulated myeloblasts 54

Neutrophil granulocytes 4859
Promyelocytes 1171
Myelolocytes 486
Metamyelocytes 703
Band forms 1104
Segmented 1355
Pseudo-Pelger 40

Eosinophilic granulocytes 351
Immature eosinophils 196
Mature eosinophils 155

Basophilic granulocytes 82
Immature basophils 16
Mature basophils 63
Atypical basophils 3

Erythropoietic cells 1099
Proerythroblasts 44
Basophilic erythroblasts 163
Polychromatic erythroblasts 646
Orthochromatic erythroblasts 244
Dysplastic erythroblasts 2

Lymphopoietic cells 283
Lymphocytes 243
Plasma cells 40

Monopoietic cells 298
Promonocytes 54
Monocytes 244

Megakaryopoietic cells 19
Megakaryoblast 9
Megakaryocyte 8
Dysplastic megakaryocyte 2

Reticulum cells 5
Mast cells 5
Core macrophage 14
Osteoblasts 1
Artefacts 2747
Total 9893

Table 4.1: Number of cells from each class in our dataset.

that the classes all have a reasonable size, while not excluding too many cell types.
Firstly, some classes are neglected completely, excluding the corresponding samples

from training, validation and testing. This is the case for all classes – except cells
of megakaryopoiesis – with less than 20 samples, for example reticulum cells, mast
cells, core macrophages and osteoblasts. Additionally, some atypical cell types such
as pseudo-Pelger cells and other dysplastic cells are not included in any experiments
or incorporated into the models themselves.
There are different, heterogeneous types of artefacts such as nucleus and cell
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shadows, damaged cells and cell-like artefacts. Although having many samples,
these artefacts are neither considered in the developed methods, nor used in the
experiments.
Another possibility to avoid too small classes, which retains the samples instead of

neglecting them, is to merge related classes into a single class. This is possible due to
the hierarchical structure of the class labels. The first classes that are merged in the
following are immature and mature basophilic granulocytes, resulting in the class
of simply basophilic granulocytes. Similarly, physiological undifferentiated blasts
and granulated blasts are merged into a single class. Megakaryopoietic cells are also
merged and not dropped, even though the resulting class is still very small. The reas-
oning behind this is that due to their size, these cells are very unique, and dropping
this entire group entirely would neglect one important lineage of haematopoiesis.
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Figure 4.2: Class frequencies of the final classes after merging and dropping of some
classes. See Table 4.1 for the exact numbers.

As shown in Figure 4.2, the remaining dataset remains highly unbalanced. For
example, neutrophilic granulocytes of all stages are much more frequent than most
other cell types. Other classes are still very infrequent due to the compromises
that had to be made between getting a reasonable size on the one hand and not
excluding too many classes on the other. These imbalances are later adressed by
other methods, which are discussed in other parts of this chapter.

4.2 A Cascade of Deep Classifiers

In this work, the domain knowledge is incorporated into the classification in the form
of hierarchical cascades. The motivation for this approach is not only a potential
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improvement of the classification performance. A hierarchical classification also
provides more insight into the classification process and is more informative, as
provides additional output at all intermediate levels of the underlying taxonomy.
Furthermore, it makes the whole classification more adaptable, as individual parts
of the cascades can be altered without affecting the rest of the hierarchy.

4.2.1 Basic Principle

Given a hierarchy tree, deep neural networks can be placed at every parent node
that has multiple children. All theses networks receive the image I as their input
and perform a prediction to which child class the sample belongs. The example
in Figure 4.3 shows a simple cascade for granulopoiesis, where a first prediction
aims to identify the lineage, before a specialised second network determines only the
exact cell type within its particular lineage. Mostly, these networks are classification
networks – another possibility in form of regression networks is introduced later in
Section 4.5.
A classification network at parent ci provides output confidences for each child

class by applying the softmax function S(yi) to the final fully connected layer’s
output vector yi. As part of this work, several different groupings of the labels
specifically for the haematological domain are investigated. These are introduced in
Section 4.4, along with their individual motivation. The following sections provide
more specific detail on how such a cascade is traversed in general to obtain a final
prediction.

Granulopoiesis

Neutrophilic 
granulocytes

Eosinophilic 
granulocytes

Basophilic granulocytes

I

Figure 4.3: Example of a hierarchical cascade of classifiers (blue boxes), derived from
the cell hierarchy of granulocytes.

37



4 Neural Network Cascades

4.2.2 Propagation Through the Cascade

To perform the hierarchical classification and obtain final leaf-class labels from in-
dividual predictions, propagation strategies need to be defined. In this work, two
approaches are examined – a deterministic approach, where every network provides
a definitive decision which branch to follow, and a probabilistic approach, based on
the calculation of the a posteriori class confidences.

Deterministic (Hard) Propagation

Each network’s output can be used to make a definitive decision by always only
following the highest confidence, given by the softmax output S(yi). At every
network, a hard classification is performed by discarding non-maximum entries.
Consequently, the hierarchy is followed only along the most promising path in a
greedy fashion. This effectively represents pruning of the hierarchy, as the input
only needs to be forwarded through networks on this one path. Hence, the predicted
multi-label C ′ is extended at each parent along the path. Algorithm 1 describes the
procedure in pseudo-code.

Algorithm 1: Hard, deterministic propagation through the hierarchy
Input: An input image I, cascade structure T with networks in nodes with

at least 2 children
Output: Predicted multi-class label C ′
C ′ ← {c0}; // initialise predicted multi-label, containing only
the root class c0
node← root(T ) ; // the currently visited node, starting at the
root

while node is not a leaf do
if node has only one child then

node← child(node);
continue

end
ynode ← network output given I at the current node;
i = argmaxS(ynode) ; // greedily follow the highest confidence
let ci be the class of the i-th child of the current node;
C ′ ← C ′ ∪ {ci}; // extend the multi-label with child-class ci
node← i-th child of node;

end
return C ′

A direct consequence of this hard propagation approach is a guaranteed consist-
ency of individual networks’ decisions and the finally assigned multi-label. However,
it does not take the confidences assigned by the softmax functions into account. Very
confident decisions, where the confidence of one class is much higher than of all sib-
lings, have the same impact as very close decisions.
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4.2 A Cascade of Deep Classifiers

Probabilistic (Soft) Propagation

Alternatively, the cascade can be traversed completely, putting the input through
every network, and calculating the a posteriori probabilities of all nodes. Each
softmax provides a confidence in the range between 0 and 1 for all children. Summing
up to 1, these confidences are – mathematically – probabilities and can be used to
calculate an a posteriori confidence value. For this purpose, as a first step the
cascade is traversed in an arbitrary order, and the input image I is forwarded
through every network without any pruning. The softmax outputs S(yi) of all
networks are collected. Afterwards, the cascade is traversed a second time, starting
from the root, such that no node is visited before all of its ancestors have been
visited. In this step, the a posteriori probabilities of the node classes are calculated
from the previously collected confidence values. For the root, the network output is
directly used as an estimated probability of the j-th child class

P (Cj|I) = S(y0,j) (4.1)

to be the correct sub-class at this level in the taxonomy. For all other nodes, the soft-
max output is used only as an estimate of the probability of the children, assuming
that the sample is also member of the parent’s multi-class Ci

P (Cj|I, Ci) = S(yi,j) (4.2)

for i 6= 0 and cj ∈ children(ci). These collected confidences are used to iteratively
calculate the a posteriori probabilities

P (Cj|I) = P (Cj|I, Ci) · P (Ci|I). (4.3)

For prediction of the final leaf class, the multi-class of the leaf with the maximum a
posteriori probability

C ′ = argmax
Ci∈leaves

P (Ci|I) (4.4)

is selected. The detailed procedure is summarised in Algorithm 2.

In the following, this probabilistic approach is also called soft propagation due to
the lack of hard decisions in intermediate levels. Every network only contributes
its confidence values, but a hard decision is only performed at the very end of
the cascade by comparing the a posteriori probabilities of all leaves. In contrast
to hard decision, it is possible that the finally assigned multi-label is inconsistent
with individual decisions when performing predictions at a non-leaf level. Such
a case is illustrated in Figure 4.4. For soft decision, the leaf with the highest a
posteriori confidence (0.405) would be predicted, while for hard decision, a leaf
with a slightly lower confidence (0.3465) is selected. This can occur especially in
cases of low confidence, as in this example for the network with confidences of
0.45 and 0.55 for its two children. Soft decision has the advantage of using the
confidence values provided by the networks, making high confidences more important
and providing additional information about the output. An increasing depth of the
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Algorithm 2: Soft, probabilistic propagation through the hierarchy
Input: An input image I, cascade structure T with networks in nodes with

at least 2 children
Output: Predicted multi-class label C ′
foreach network i in T do // in an arbitrary order

forward I through network i and store softmax output S(yi);
foreach child j of node i do

assign P (Cj|I, Ci) = S(yi,j)
end

end
// calculate a posteriori confidences:
foreach child j of the root node 0 do

assign P (Cj|I) = S(y0,j);
end
foreach non-root node i with at least 2 children do // from root to
leaves

foreach child node j do
P (Cj|I) = P (Cj|I, Ci) · P (Ci|I)

end
end
// perform prediction:
return C ′ = argmaxCi∈leaves(T ) (P (Ci|I))

hierarchy poses an additional challenge for the probabilistic approach, as the number
of competing nodes increases. The repeated multiplications and the possibility that
multiple a posteriori confidences in different branches can become relatively close
might potentially cause numerical instability. In practice, deep neural networks tend
to be overconfident [54], therefore it can be expected that the outcome will be the
same in most cases.

4.3 Cascade Training

To train a hierarchy of networks, an appropriate method must be defined. In general,
it is possible to train individual networks separately (Section 4.3.1) or all at once
(Section 4.3.2) under different premises. Both methods are motivated and formally
defined in the following.

4.3.1 Separate Training of the Individual Networks

The individual networks in the cascade can be trained separately and in an arbit-
rary order. This procedure represents a local per parent approach to hierarchical
classification. The individual networks are trained, validated and tested only with
samples that are a member of the parent node’s class, and consequently belong to
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Figure 4.4: Comparison of hard and soft propagation. In this example, the resulting
prediction is not the same. The highlighted edges indicate the path
followed during hard propagation. All a posteriori probabilities are only
calculated during soft propagation.

one of its descendant leave classes.
This assures validity of (4.2) – the task of prediction whether a given sample

belongs to a parent multi-class Ci is left solely to the previous network, while it
is presumed by the current network. Consequently, the network’s output can be,
when using soft, probabilistic propagation through the hierarchy, interpreted as an
estimate of the conditional probability P (Cj|I, Ci). The resulting training proced-
ure, given in Algorithm 3, is relatively simple. It allows for a modular approach,
with individually adjustable training parameters θi allowing for example different
amount of training depending on the individual performance, or different loss func-
tions for different networks. Furthermore, separate training makes it possible to
employ model selection for each individual network based on its validation score, in
contrast to selecting the optimal overall model. Also, since the propagation is not
relevant for training single networks, it is possible to switch between the different
propagation strategies without requiring any other adjustments or retraining. The
networks can be assembled into the cascade after training, during training they are
fully independent, as the cascade is never traversed in its entirety.

4.3.2 End-to-End Training of the Cascade as a Whole

When performing the soft, probabilistic propagation strategy, it is possible to train
the entire cascade end-to-end (Algorithm 4). Looking only at the leaves, the a
posteriori probabilities of the leaves sum up to 1

n∑
i=1

P (Ci|I) = 1, (4.5)

41



4 Neural Network Cascades

Algorithm 3: separate training of individual networks
Input: Set of training parameters θ, classification hierarchy T
forall nodes i in T with at least 2 children do // in an arbitrary order

initialise a local network at node i;
foreach epoch do // number of epochs specified in θi

for batches of data from the subtree rooted in node i do
train local network with training parameters θi;
// backpropagation of loss, weight update...

end
determine current validation performance;

end
select model state with best local validation score;

end
// end of training: Only now the cascade needs to be composed
select a propagation strategy; // can arbitrarily be changed later
without a need to retrain the networks

as they do in flat classifiers. Consequently, the whole network can be seen as a single
black box network, which can be trained using a single loss. The multiplication of the
individual network outputs in soft propagation leads to well-defined gradients. This
end-to-end training can be seen as a global approach to hierarchical classification, at
least during the training phase. The structure of the cascade directly incorporates
the hierarchy, but is trained as a whole.

Hierarchical Tree Loss

It is possible to train the whole cascade using any appropriate loss, for example the
cross-entropy loss (2.9). Such standard losses however do not account for the given
taxonomy. Therefore, to extend the global hierarchical classification approach, it
might be desirable to incorporate the class relationships into the loss. The hierarch-
ical loss defined by Wu et al. [30] (see Section 3.2.3) is applicable only when the
hierarchical classification is performed on ultrametric trees. A good hierarchical loss
should penalise more distant misclassifications more heavily than close ones. Then,
applied to a cascade of classifiers which is trained end-to-end, a high loss means that
the error is located also at earlier levels in the taxonomy. Since potentially more
networks are involved in causing this misclassification, a larger training step might
be beneficial. A low, non-zero loss on the other hand should indicate a misclassific-
ation close to the leaves.

With these considerations, another hierarchical loss is defined. It is based on the
cross-entropy loss, but weighs the individual loss components differently

Ltree = −
1

N

N∑
i=1

w(ti,yi) ·
n∑
c=1

ti,c · log(yi,c). (4.6)
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Algorithm 4: End-to-end training of the entire cascade
Input: Training parameters θ, classification hierarchy T
// the cascade needs to be composed before the actual training

begins:
initialise individual networks in all nodes of T with at least 2 children;
foreach epoch do // number of epochs specified in θ

foreach batch in the training set do
forward images in batch through entire cascade using soft propagation;
calculate and backpropagate loss through all networks in T ;
update weights of all networks at once;

end
evaluate performance of whole cascade on validation set;

end
select best performing model state based on validation score;

Here, the weight function w is defined as

w(ti,yi) =
n∑
j=1

yi,j · dist (j, argmax(ti)) , (4.7)

where
dist (j, argmax(ti)) = |Cj \ Cargmax(ti)|+ |Cargmax(ti) \ Cj| (4.8)

is the distance between the j-th leaf and the correct leaf, defined as the number of
mismatches between the multi-labels of these leaves. Relaxing the directionality of
edges within the tree, this is the same as the length of the path between the true
leaf and the current leaf.

4.4 Cascade Structures

Part of this work is the inspection of different hierarchical structures to guide the
classification based on the haematological dataset as introduced in Section 4.1. Sev-
eral different possibilities are introduced, each in form of a tree with networks placed
at each node with two or more children. These different structures are described
in this section. As mentioned in Section 4.1, artefacts are not considered by these
hierarchies, but could always be included by adding a new root to the hierarchy,
with two children corresponding to either artefacts or blood cells in general.

4.4.1 Full Hierarchy Directly Based on Cell Hierarchy

A first possibility to define a hierarchy to guide classification is simply orienting on
the developmental cell hierarchy. In many cases, cells of the same haematopoietic
lineages are more similar to each other than to cells of other lineages. Following
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Figure 4.5: Full hierarchy classification tree. The circle indicates the root, rectangles
with rounded edges represent networks.

the cell hierarchy for classification incorporates these lineage-dependant character-
istics. Furthermore, every classification within the cascade represents a biologically
well-founded distinction. The hierarchical structure, which is shown in Figure 4.5,
contains several intermediate steps, as the classification is becoming more and more
specific. First, more general lineages are separated, for example for haematopoietic
cells whether they belong to granulopoiesis, erythropoiesis, lymphopoiesis et cet-
era. More specialised networks then distinguish different maturation stages within
a single lineage.

4.4.2 Simplified, Ultrametric Hierarchy
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Figure 4.6: Simplified, ultrametric hierarchy classification tree.

The full hierarchy contains many networks, often with only relatively few classes.
Additionally, it is not ultrametric, meaning that different leaf classes can have a dif-
ferent number of preceding networks. By removing some internal nodes along with
their networks, the hierarchy can be simplified, while still roughly representing the
haematopoietic cell hierarchy. With some re-grouping such a simplified taxonomy
can be made ultrametric. The resulting tree is shown in Figure 4.6. Compared
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to the full hierarchy, blood cells are directly divided into the groups of neutro-
philic granulocytes, non-neutrophilic granulocytes, lymphopoiesis, erythropoiesis,
monopoiesis, and others. Therefore, each path from the root to any leaf passes two
networks, one to classify the group, and one to specify the class within these groups.
As a side note, other than in the other hierarchies, artefacts should not be inserted
with a new root node, but for example as a child of the other node to keep the tree
ultrametric.

4.4.3 Feature-Based Cell Grouping

Another possibility to group the cell classes is to solely focus on certain features at
certain levels in the cascade. This approach does not directly take cell-type rela-
tionships into account but is based only on visual characteristics. On the contrary,
completely new multi-classes are introduced, each representing certain feature char-
acteristics. A drawback of such an artificial taxonomy is that it is difficult to find
an appropriate structure which is significantly different from the hierarchy based on
the cell development, because many characteristics are shared between cells from
the same lineages. Furthermore, features may vary even for cells of the same class
and it can be difficult to assign a cell type to a fixed feature group. In the following,
three such feature-based groupings are detailed.

Hierarchy based on Cytoplasm Colour and Granulation

polychr. ery.

megakaryopoiesis

basopillic blue
cytoplasm

lymphocyte

plasma cell

blast

not granulated

granulated
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eosino. gran.

neutro. gran.
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Figure 4.7: Feature-based classification tree based on cytoplasm colour and granula-
tion.

A first hierarchy separates cells based on the underlying cytoplasm colour in the
first step, and based on granulation in a second step. It is visualised in Figure 4.6.
Polychromatic erythroblast have a diverse cytoplasm colour and cannot be assigned
to any of the classes, while cells of megakaryopoiesis are often too large for image
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patches of 224× 224 pixels. For these reasons, these two classes are not assigned to
any of the groups, but inserted as leaves already at the first level of the tree.
The first group of cells is characterised by a relatively light cytoplasm colour. This

includes all more mature stages of granulopoiesis starting from myelocytes and or-
thochromatic erythroblasts. Immature basophilic and eosinophilic granulocytes are
also accounted to this group; however, this reveals a problem of the feature-based
approach. The cell types that are summarised as immature contain also promy-
elocytes which for neutrophilic cells are accounted to the other group. However,
both classes are relatively small, and since the promyelocytes stand opposed to my-
elocytes, metamyelocytes and band forms, are assigned to this group. Especially
for basophilic granulocytes, an additional difficulty for classification into this group
is the fact that the strong granulation often obscures the actual cytoplasm colour.
Within the cells with a light, non-basophilic cytoplasm, there is a further division
based on the granulation. The resulting four groups are basophilic, eosinophilic
and neutrophilic cells, and the non-granulated cells, only containing orthochromatic
erythroblasts.
The second group contains cells with a more or less basophilic cytoplasm. Within

this group, lymphocytes and plasma cells are directly treated as leaves. The other
cells are grouped into granulated and non-granulated cells. Granulated cells include
both monocytes and promonocytes as well as promyelocytes, while the group of
ungranulated cells includes proerythroblasts and basophilic erythroblasts. Blasts
include both physiological ungranulated blasts and granulated blasts, and therefore
are not assigned to any of these two groups, as well as lymphocytes and plasma
cells. Further separations are not performed because of the relatively small sizes of
the resulting groups.

Hierarchy based on Nucleus-to-Cytoplasm-Ratio and Nucleus Shape

megakaryopoiesis

basophilic gran.

N/C over 50%

N/C under 50%

band or
segmented

nucleus

mature eosino.

neutrophilic
gran.

horseshoe
nucleus

round nucleus

blast immat. eosino. lymphocyte proerythroblast promyelocyte basophilic ery.

band gran. segmented

monocyte promonocyte metamyelocyte

plasma cell myelocyte polychr. ery. orthochr. ery.

Figure 4.8: Feature-based classification tree based on the nucleus-to-cytoplasm ratio
(N/C) and nucleus shape.

In the second feature-based hierarchy, shown in Figure 4.8, cells are first divided
into large and small nucleus-to-cytoplasm ratios and then grouped by nucleus shape.
Again, cells of megakaryopoiesis are not assigned to any of these groups, because they
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are usually exceeding the image patches. Similarly, the merged basophilic granulo-
cytes are also inserted here, because the group membership is unclear – depending
on the maturity of the specific sample. The threshold for the two groups was selec-
ted to be 50 %, based on literature [7] values. Large nucleus-to-cytoplasm ratios are
a common characteristic of many immature stages such as immature basophilic and
eosinophilic granulocytes, myeloblasts and promyelocytes and proerythroblasts as
well as basophilic erythroblasts. Additionally to these blast stages, the group of cell
types with a relatively large nucleus also contains the more mature lymphocytes.
Since all these cells have round or oval nuclei, there is no further division within this
group.
The second group of cells consists of more mature stages, and is sub-divided based

on the nucleus shape. The first sub-group is comprised of cells with a band-form or
segmented nucleus, and itself is divided into neutrophilic, basophilic and eosinophilic
cells. Again, basophilic granulocytes are a special challenge, since the nucleus is
often obscured by the basophilic granules, so neither the nucleus-to-cytoplasm ratio
nor the segmented character of the nucleus are visible. The second sub-group are
cells with a horseshoe shaped nucleus, which are metamyelocytes and both stages of
monopoiesis. The third and final sub-group are cells with a round or an oval nucleus,
which are orthochromatic and polychromatic erythroblasts, myelocytes and plasma
cells.

Hierarchy Based on Nucleus Shape and Visibility

basophilic gran.

megakaryopoiesis

non-round nucleus

mature eosino.

promonocyte

not segmented

segmented
gran.

round nucleus

late eryth-
ropoiesis

less visible
nucleus

non-obscured
nucleus

metamyelocyte band gran. monocyte

orthochromatic polychromatic

proerythroblast basophilic ery. promyelocyte immat. eosino.

lymphocyte plasma cell blast myelocyte

Figure 4.9: Feature-based hierarchy classification tree based on nucleus shape and
visibility.

Lastly, the third feature-based hierarchy is again based on nucleus shape in a
first step, and then the more subjective nucleus visibility and overall granulation
strength, as shown in Figure 4.7. At the first stage, cell classes are separated based
on whether their nucleus is round (or oval) or indented. Basophilic granulocytes
and cells of megakaryopoiesis are treated as separate leaves at this stage already,
because these features are not necessarily visible or definitively assignable to one of
these two groups.
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Within the group of cells with a round nucleus, the first sub-group is late eryth-
ropoiesis, containing polychromatic and orthochromatic erythroblast, which are
both defined by a relatively small, condensed nucleus. Cells in the second group
often have a rather low contrast between nucleus and cytoplasm, for example due
to granulation or a strongly basophilic cytoplasm. Classes belonging to this group
are proerythroblasts, basophilic erythroblasts, promyelocytes and immature eosino-
philic granulocytes. All other cells with round or oval nucleus are constituting the
third sub-group. These cell types are myeloblasts, myelocytes, lymphocytes and
plasma cells.
Cells with an indented nucleus are further separated depending on whether they

have a segmented or a non-segmented nucleus. Promonocytes and mature eosino-
philic granulocytes are not assigned to any of these classes. For promonocytes, a
correct assignment to these binary groups is difficult, while eosinophilic granulocytes
often only show two, large segments, and furthermore, are well characterised by their
eosinophilic granulation, justifying their treatment as a separate class. The group of
cells with a segmented nucleus therefore only consists of a single class – segmented
neutrophilic granulocytes – while the non-segmented cells are metamyelocytes, band
granulocytes and monocytes.

4.4.4 Using Spectral Clustering to Build a Hierarchy

Previous hierarchies are either oriented on the actual cell hierarchy or have manu-
ally been designed based on certain features. An alternative idea is to obtain a
classification tree not by manual design, but in an automated fashion by performing
clustering, based on an appropriate similarity measure.

Clustering of the Confusion Matrix

In many cases, a classifier confuses some classes more than others. Often, but not
exclusively, such misclassifications occur between more closely related classes. It
is possible to divide a classification process hierarchically by grouping more easily
confusable classes together and then training a specialised network that solely aims
to distinguish these classes. An appropriate measure for the misclassifications of a
classifier is given by its confusion matrix. Figure 4.10 shows the combined confusion
matrix obtained on the test data from all cross-validation runs of an experiment
using a flat DenseNet-121 (see 5.1 for the general experimental setup). A confusion
matrixM ∈ Nn×n0 can be interpreted as an asymmetrical similarity matrix between
the classes. However, spectral clustering (see Section 3.4.1) requires a symmetrical
similarity matrix S. Such a symmetrical matrix can be obtained by

S =M +MT ∈ Nn×n0 . (4.9)

In principle, S can be used for spectral clustering, but it is affected by class imbal-
ances, since it contains the absolute number of confusions rather than the relative
frequencies. In extreme cases, a large class may be misclassified as another class only
relatively few times, but compared to a much smaller class, the absolute number of
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Figure 4.10: The confusion matrix of a flat DenseNet-121 used for spectral clustering.

these misclassifications may still be large. Therefore, either the rows or columns
of S can be normalised, unless a whole row or column is zero. After normalising
the rows, S ∈ Rn×n describes the relative frequencies of the predicted classes given
the actual class. Vice-versa, normalising the columns yields a matrix S ∈ Rn×n
representing the frequencies of the actual classes given the predicted class label.
Regardless if and how the similarity matrix is normalised, spectral clustering can

be performed. For the number of clusters, the eigengap heuristic is used. The
confusion matrix shown in Figure 4.10 is used to derive a similarity matrix. It
should be noted that, in general, it is problematic to design a method based on the
test set on which the resulting performances are compared. In general, it would be
preferable to use a separate, disjoint subset to obtain the confusion. However, due
to the already limited size of the dataset, the combined test results are used here.
The upper plot in Figure 4.11 displays the absolute values of the eigenvalues of the
Laplacian matrix L for the case of row normalisation. The largest gap between
subsequent eigenvalues occurs from k = 4 to k = 5. The eigenvalues λ1 up to λ4 are
relatively close to zero compared to all following eigenvalues. Therefore, the number
of clusters made in the first stage is selected to be 4, which results in the tree shown
in Figure 4.12.
The first cluster contains plasma cells and basophilic, polychromatic and ortho-

chromatic erythroblasts. In the second cluster, metamyelocytes, band and segmen-
ted granulocytes are combined, while the third cluster only contains mature and
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Figure 4.11: Eigenvalues of the Laplacian matrix for spectral clustering based on the
confusion matrix of a flat network. The plots in the lower row show the
eigenvalues within the four resulting clusters.

immature eosinophilic granulocytes. The fourth and final cluster contains all other
cell types. Analysis of these clusters based on the biological background shows that
they tend to contain relatively similar cells. For example, the second cluster only
consists of relatively mature stages of neutrophilic granulocytes. The first cluster
contains three types of erythroblasts. Polychromatic and orthochromatic erythro-
blasts both are characterised by a relatively condensed nucleus, conversely, plasma
cells also have a relatively small nucleus compared to their size. However, in other
cases, no particular characteristic is obvious. From this clustering, it is theoretically
possible to further divide the resulting clusters. However, it showed that within
these clusters, the eigengap occurs already between k = 1 and k = 2, as shown in
the lower plots in Figure 4.11. Consequently, these clusters are not further divided.
As a side node, all three possibilities of defining S result in the same final clusters
here. Even though the eigenvalues differ slightly, the overall pattern is similar.

Clustering of a Similarity Matrix as Defined by Medical Experts

Medical experts from the Department of Haematology, Oncology, Haemostaseology
and Stem Cell Transplantation at the University Hospital of the RWTH Aachen
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proerythroblast megakaryop. promonocyte monocyte

Figure 4.12: Classification tree from spectral clustering of a confusion matrix.

University have rated the similarity between 15 cell types. The doctors were asked
to rate the confusability of a given cell type with the other types on a scale from
1 (not confusable) to 5 (not distinguishable), only assuming non-pathological cell
forms. For the resulting similarity matrix Ŝ (see Appendix A.2) to be a valid
similarity matrix for spectral clustering, is again made symmetrical by adding its
transposed matrix

S =
(
Ŝ + ŜT

)
∈ Nn×n0 . (4.10)

By additionally subtracting 2 from S, all matrix elements corresponding to the
lowest similarity value (1 in the survey, 2 after adding the transposed matrix) are
set to zero. This effectively deletes many edges in the similarity graph and assures
that S models only the local neighbourhood of the classes, as required for spectral
clustering [40].
On this similarity matrix, spectral clustering is performed. The eigenvalues of the

resulting Laplacian matrix are shown in the upper plot in Figure 4.13. Although it
is not very clear in this case, a relatively large gap occurs between k = 5 and k = 6,
so following the eigengap heuristic, 5 clusters are created.
The classification tree is shown in Figure 4.14. A first cluster contains basophilic

and eosinophilic granulocytes together with neutrophilic promyelocytes and myel-
ocytes. The second group consists of the more mature neutrophilic granulocytes,
namely metamyelocytes, band and segmented granulocytes. Cells of erythropoiesis
make two clusters, one containing the more mature polychromatic and orthochro-
matic erythroblasts, and the other containing proerythroblasts and basophilic eryth-
roblasts. The final cluster contains the other cells covered by the survey, which are
blasts, lymphocytes, promonocytes and monocytes. Again, these clusters are not
further divided, because the resulting clusters would be very small and because of
the eigenvalues: As shown in the lower plots in Figure 4.13, all eigenvalues of the
Laplacian matrices from these clusters for k > 1 are larger than 0.5.
Cell types that were not included in the survey are placed at appropriate positions

based on the biological background. Eosinophilic granulocytes are simply split into
mature and immature cells, but kept at the same position. Cells of megakaryopoiesis
are inserted as a separate group of their own, because of much larger different size.
Plasma cells are inserted as a sibling of their closest relative, which are lymphocytes.
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Figure 4.13: Eigenvalues of the Laplacian matrix for spectral clustering, based on
cell type similarity rated by medical experts. The plots in the lower
row show the eigenvalues within the five resulting clusters.

4.4.5 Hierarchy Reducing Class Imbalances

A large practical problem in training deep classifiers is class imbalance. In a hier-
archy, class imbalances can in many cases be less extreme compared to a flat, single
network. The reason is the combination of several classes into intermediate classes
in early levels, and the exclusion of many classes at later levels in specific branches
of the hierarchy. However, at least in early levels, the imbalances may even be
amplified if – coincidentally – large classes are in the same sub-class. This is, for
example, the case for neutrophilic granulocytes, which are all relatively frequent in
the dataset (see Figure 4.2) and can, when combined, outnumber any other class
at an intermediate level in the hierarchy. Based on these considerations, it is pos-
sible to design a hierarchy specifically reducing class imbalance at all levels. Such
a hierarchy in general does not directly incorporate the biological background, on
the contrary, in many cases it might contradict the domain knowledge by separating
similar classes for the sake of achieving more balanced class sizes.
A simple hierarchy with only three networks that achieves more balanced classes

is visualised in Figure 4.15. Cells are grouped into frequent cells with at least 350
samples, infrequent classes with between 80 and 350 samples, and rare classes for

52



4.4 Cascade Structures

cluster 1

cluster 2

cluster 3

cluster 4

cluster 5

megakaryopoiesis

baso. gran. immat. eosino. mature eosino. promyelocyte myelocyte

metamyelocyte band gran. segm. gran.

orthochr. ery. polychr. ery.

proerythroblast basophilic ery.

blast lymphocyte plasma cell promonocyte monocyte

Figure 4.14: Classification tree from spectral clustering of similarities as rated by
medical experts.
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Figure 4.15: Classification tree with similar class-sizes for every network.

all cell types that have less than 80 samples. These groups and their boundaries
were selected based on large gaps in the class size statistics while trying to keep the
number of groups as low as possible. Basophilic granulocytes could also be assigned
to rare cells, but in that case they would outnumber all other rare classes, which are
especially vulnerable to class imbalances. Figure 4.16 displays the resulting class
frequencies of the different groups in the hierarchy.

4.4.6 Nonsensical Hierarchy for Reference

For evaluation of the impact of cascading the classification process, another hierarchy
is introduced. Instead of being inspired by the biological background or the cell’s
appearances, an existing hierarchy is taken and the leaves are randomly shuffled,
leaving the overall structure untouched. Figure 4.17 shows the classification tree
which, exemplary, is used in this work, and based on the full hierarchy that was
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Figure 4.16: Class sizes of the three networks in the hierarchy with reduced class
imbalances.

introduced in Section 4.4.1. The structure as well as the networks, including the
number of parameters, remain unchanged. However, the random shuffling might
make the predictions of the individual networks – especially at early levels, where
the classes are composed of many diverse cell types – much more difficult because the
intra-class variance is increased. This reference allows an investigation of the effects
of the cascading itself by removing the potential gains due to the incorporation of
the domain knowledge.

4.5 Maturity Estimation Using Regression

Within early stages of the cell hierarchy, classification is the only appropriate ap-
proach to distinguish the unordered individual lineages. However, within these
lineages, the cell types can be ordered by maturity. This is especially true for
granulocytes, where the different stages are ordinal classes from a continuous pro-
cess, meaning that the class membership of a cell is not always certain. In particular,
this is the case after reaching the state of metamyelocytes, when there are no further
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Figure 4.17: Classification tree with no sensible cell groupings. The inner structure
is the same as for the full hierarchy as shown in Figure 4.5, only leaves
have been interchanged randomly.

cell divisions.

4.5.1 Introducing Regressors for Maturity Estimation

Using a single, flat network, the network must be a classifier, because no global
ordering of the classes is possible. However, a cascade of neural networks allows for
more variety in the network types. Networks specialised on distinguishing different
cell types within a certain lineage can be replaced by regressors to account for the
ordinal character of the cells. Such linear regressors only have a single output –
instead of one for each class – and are not further processed by an activation func-
tion such as softmax. In the following, this is examined for the three lineages of
granulocytes. For neutrophilic granulocytes, five stages are distinguished, while for
basophilic – if not merged into a single class – and eosinophilic granulocytes there
are only two. The maturation stages are converted into linearly separated targets,
ranging from zero for the most immature to four for the most mature stage. Figure
4.18 illustrates the targets for the regression.

4.5.2 Transformation of Regression into Classification

Using regression in context of the entire cascade requires hard, deterministic propaga-
tion, because the regressor’s output y does – other than a classifier’s softmax func-
tion – not provide a probability estimate. When the task of the overall cascade
remains classification, a class label must be derived from y. The regression output y
can be converted into classification by simple rounding. Here, the class represented
by the closest target to y is selected, as indicated in Figure 4.18. The resulting
decision intervals to predict a class label based on the regression output are also
indicated in Figure 4.18. It should be noted that, by rounding to the next valid
target, the decision boundaries are located in the middle between two neighbour-
ing targets. This means that the output values y generally have different meanings
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Figure 4.18: Regression labels and decision intervals for granulocytes. Dots mark
regression targets, the dashed lines mark the decision boundaries for
conversion into classification.

for neutrophilic granulocytes compared to eosino- and basophilic granulocytes. For
the latter two lineages, cells are classified as mature – which usually only includes
segmented and sometimes band granulocytes – if y exceeds two. However, for neut-
rophilic granulocytes the same output value might still indicate an immature stage,
such as metamyelocyte or band granulocyte. Compared to standard classification
with an output value per class and application of softmax function, this approach
might be better suited to reduce misclassifications between more distant maturity
stages because of its ordinal character.

Alternatively to this conversion into classification, it would also be possible to
stop classification at the previous level, assigning only the parent class – for ex-
ample "neutrophilic granulocyte" – and use the maturity estimation provided by
the regressor as additional information. This however would require adjustments to
the evaluation procedure. Therefore, in this work, the regression is always converted
into classification again.

4.6 Weight Initialisation from Pretrained Networks

A cascade of multiple networks already requires more training than a single network
by nature. This makes it even more important to employ transfer learning and
initialise the networks from a pretrained state.

4.6.1 Pretrained on ImageNet

The first possibility is pretraining on the ImageNet dataset [22,23]. Such pretrained
models are widely available and therefore need no further training before being used
for transfer learning. Using ImageNet models as a starting point has proven to lead
to major improvements for flat classifications on our dataset [3] and therefore might
be useful for a cascade of classification networks as well.
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4.6.2 Pretrained on the Haematology Dataset

Another possibility to pretrain the individual networks is to start from a network
already trained on the dataset. The individual networks have to specialise on differ-
ent aspects, but all perform cell classification on the same underlying dataset. First
training a network on the entire dataset leads to features generally useful on that
domain. Instead of having to relearn those features, the individual networks can
then focus on a specialisation process, depending on their individual task within the
cascade. Starting from a general, flat network is preferable to, for example, using
the previous network in the cascade for initialisation. Ideally, individual networks in
the cascade should mostly focus on different features at different positions. Due to
this orthogonality of classifiers, transfer from other networks in the cascade would
not be helpful, because the feature sets are, in theory, disjoint. A general network,
pretrained on the entire dataset at once, on the other hand could possibly provide
at least some of the relevant features for an individual network of the cascade. Fur-
thermore, from a more practical point of view, initialisation from another network
that is part of the cascade would lead to the loss of the ability to train the networks
in an arbitrary order.

4.7 Parameter Sharing Between Individual
Networks

Especially low-level features, such as edges and corners, might be redundant among
the individual networks. In a cascade of networks of the same architecture, this
redundancy might lead to an increased training time and an increased memory
requirement.

4.7.1 Division of ResNet and DenseNet into Four Blocks

Both DenseNets and ResNets are comprised of four convolutional blocks with some
additional in- and output layers (see Section 3.1). In DenseNets, the four dense
blocks (see Figure 3.4) are an obvious choice where the network can be split. The
input convolution layer and max pooling layer are not treated as a separate block,
but always combined with the first dense block because of the very low number of
parameters.
For ResNets, the blocks can be defined similarly (see Figure 3.2). Here, conv1

and conv2 together make a first block, and conv3, conv4 and conv5 each represent
another block. Table 4.2 gives an overview on the number of learnable parameters
in the four blocks of both architectures at the smallest available depths. Having
multiple networks of the same architecture allows to share some or all of these
blocks. The accumulated number of parameters in Table 4.2 when using the first
k blocks shows a main difference for the two architectures. For ResNet-18, the
first three blocks together only make up approximately 25% of the total number of
learnable parameters, all others are found in the fourth block, while for DenseNet-
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121, the first three blocks combined contain around 69% of the parameters. This
leads to the assumption that the effect of sharing blocks may be much stronger for
DenseNet than for ResNet.

ResNet-18 DenseNet-121

parameters in % accumulated parameters in % accumulated

Block 1 157 504 1.41% 1.41% 377 856 5.43% 5.43%
Block 2 525 568 4.70% 6.11% 1 051 776 15.13% 20.56%
Block 3 2 099 712 18.79% 24.90% 3 364 096 48.38% 68.94%
Block 4 8 393 728 75.10% 100% 2 160 128 31.06% 100%
Total 11 176 512 100% 100% 6 953 856 100% 100%

Table 4.2: Number of learnable parameters in different blocks of ResNet-18 and
DenseNet-121. For the final, fully connected layer this number is vari-
able, depending on the number of outputs, and therefore not included in
the table.

4.7.2 Sharing of Blocks in a Cascade of Neural Networks

It is possible to share the first one, two, three or even all four of these blocks between
individual networks in the cascade. The extreme case of sharing all blocks, including
the whole convolutional part of the networks, would not allow for any specialised
features at certain points in the cascade whatsoever. Such a cascade would essen-
tially be nothing but a single, flat network – with the only part being adjusted
during cascade training being the final fully connected layer. Shared blocks should
be taken from a network trained on the same dataset, and then be fixed during
cascade training. Adjusting the shared layers as well would not reduce the training
time. Furthermore, the separable training of the individual networks would become
incompatible with shared layers. The reason is that the order of training could
make a significant difference, as the training data for these shared layers would not
be shuffled but determined by the currently trained individual network.

The common blocks of the networks comprise an entirely convolutional neural
network, as shown in Figure 4.19, with the sole purpose of feature extraction from
the input image I. When forwarding a sample through the cascade, the image is
first processed by this extractor network, which provides an intermediate feature
representation F as its output. Passing the image through these layers only needs
to be performed once. Then, the cascade is traversed as usual, but each – now
smaller – network is given the feature map F instead of the entire image.

4.8 Compensation of Class Imbalances

The class sizes in the dataset are strongly imbalanced. In a hierarchy, classes are
combined in early levels, and the resulting class sizes are the sum of the sizes of their
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Network 0
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F

Figure 4.19: Principle of block sharing. The image I is given to the feature extractor
network, and the resulting feature maps F to the individual networks.

member-classes. Section 4.4.5 already addressed a structure designed to compensate
for the class imbalance. Two other ways of partly compensating class imbalance that
can be used in flat networks as well as in the individual networks in a cascade are
loss weights and oversampling. These two methods are introduced in the context of
hierarchical classification in the following.

4.8.1 Loss Weights

Plain cross-entropy loss (2.9) is impacted by class imbalances. Averaged over the
entire dataset, more frequent classes contribute more terms to the sum, while small
classes have a smaller impact. To compensate this, weight factors γi can be intro-
duced into the cross-entropy loss

LWCE,γ = −
1

N

N∑
i=1

γi

n∑
c=1

ti,c · log(yi,c), (4.11)

giving small classes a higher weight [51]. Such loss is called the weighted cross-
entropy loss (WCE). The weight factor can for example be defined based on the
inverse class frequencies to compensate class imbalances. Let Ni be the size of the
i-th out of in total n classes such that

N =
n∑
i=1

Ni. (4.12)

Then, a possible way to calculate loss weights of the individual classes is

γi =
n

N δ
i ·
∑n

j=1
1
Nδ
j

. (4.13)
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The parameter δ can be used to tweak the weight. For δ = 0, this results in the
standard, unweighted cross-entropy loss.

In a cascade of networks, class sizes at intermediate levels are given by the sum of
the combined class sizes of all descendant leaf classes. Compared to a flat classifier,
the loss weights can be calculated for every individual network in hierarchical clas-
sification separately. Over the course of the cascade, this means that the loss from
a given sample can be weighted differently, based on the level in the hierarchy and
the size of the combined class at that position.

4.8.2 Oversampling of Underrepresented Classes

Another possibility to address class imbalance is oversampling of underrepresented
classes in combination with data augmentation. Oversampling means that samples
from smaller classes are repeated within an epoch randomly. In combination with
data augmentation, the training data added this way become more heterogeneous.
For a given class with Ni samples in the dataset, the resulting number of samples
N∗i can, for example, be determined by

N∗i = Ni ·

 max
j∈{1,...,n}

(Nj)

Ni

ν

. (4.14)

Similar to the loss weight, the oversampling can be tweaked by a parameter ν. The
class frequencies are unchanged for ν = 0, while any ν > 0 oversamples the un-
derrepresented classes. For ν = 1, the resulting numbers of samples per class are
calculated as the fraction of samples in a given class compared to the largest class,
while ν = 0.5 is the square root of this fraction.

As for the loss weights, oversampling can be performed separately for all individual
networks within a cascade of networks. Different class sizes at different positions in
the hierarchy require different oversampling to achieve balanced class sizes.

4.9 Feature Forwarding

So far, the individually trained networks in the cascade have been completely inde-
pendent. There is no need for any dependencies if the features distinguishing the
classes at different levels are orthogonal, meaning that the sets of features relev-
ant for different decisions in the cascade are disjoint. If this assumption holds, the
defining features at a given level are completely irrelevant for all later levels. For
example, one network might only aim to decide whether a cell has a round or seg-
mented nucleus, while a subsequent network only judges the granulation, completely
independently of the nucleus shape. However, in many cases, this assumption does
not hold, because there are correlations of such cellular characteristics. For this
reason, feature forwarding is introduced. It introduces embeddings into the cascade,
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which can also be useful in other aspects, for example for visualisation of the model’s
feature space.

4.9.1 Principle

Features learned by early networks for prediction of more general classes may also
be useful for later, more specific classification. The reasons are that, in many cases,
more than a single feature might influence the decision, and even if different cell
types in a certain group within the hierarchy share a certain characteristic, it can be
more pronounced for some than for others. To exploit these already learnt features,
feature forwarding is introduced. Its idea is inspired by residual connections in deep
architectures in general, and in particular by DenseNets [13], as it introduces skip
connections from one stage to all following stages in the cascade. This is illustrated
in Figure 4.20.

I

convolutional
layers

F

v
vcat

v

v

v

vcat

vcat

convolutional
layers

convolutional
layers

convolutional
layers

F

F

F

Figure 4.20: Principle of feature forwarding. In an intermediate step, each network
learns a feature map, represented by a small, coloured box, which is
concatenated with the feature maps of all following networks, as indic-
ated by the dashed boxes.

In all networks, an additional fully connected layer is inserted right before the final
linear layer. This additional layer receives the feature maps F from the convolutional
layers and has a fixed output size, the embedding length nemb. The networks each
learn an nemb-dimensional feature representation vi which – ideally – allows the best
possible separation between classes at its level. These embedding vectors are passed
to all descendants in the hierarchy, providing the learnt features to all following
networks along a path in the cascade. In the root network, its embedding vector is
directly provided to the classification layer to obtain its output as usual. The final
classification layers of all non-root networks receive the concatenation

vcat,i = [v0, ..., vi] (4.15)
=
[
vcat,parent(i), vi

]
(4.16)
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of all preceding feature maps as well as the embedding given by the convolutional
layers at their own stage. These concatenations are performed successively along
paths from the root to the leaves. Consequently, for a network at depth l in the
cascade – starting with l = 1 for the root – the final linear layer receives an input
vector with

ncat(l) = l · nemb (4.17)

dimensions

4.9.2 Training with Feature Forwarding

For more efficient training when using feature forwarding, the training algorithm
is adjusted. The networks are always trained separately in order as given by the
hierarchy, starting from the root. Each network is fully trained before moving to the
next one because of the one-way root-to-leaf dependency. This way, later networks
receive the final, fixed feature representations from their predecessors for a given
input, such that training is performed with as much information about the final
model as possible. As a side note, this procedure is only possible when only the
feature maps of the ancestors are provided to a network. If other feature maps
were included, for example from other networks at the same level in the hierarchy,
it would be unclear in which order to train the networks. The motivation for this
training procedure is to create different, complementing features, and to reduce
redundancy. Although the outcome now also depends on all earlier networks, their
weights remain unchanged to prevent interference with the earlier stage classification
as well as with the siblings, which are also relying on the same embedding vectors.
As a consequence, even though it is theoretically possible to resume training for more
epochs, it has to be noted that this will not necessarily yield the same outcome as
training a fresh model for the increased total number of epochs.

4.9.3 Use of Embeddings for Training Visualisation

Often, embeddings are, after application of dimensionality reduction, used for visu-
alisation of the learned feature space. In a cascade of networks using feature for-
warding, there are different embeddings at different positions in the network. This
allows for visualisation of the individual decisions at any position in the hierarchy,
by only considering the concatenated embeddings used for the individual network
at that position.
However, a visualisation of the entire training process including all classes at once

is not trivial. In a cascade of neural networks, it is not obvious how to combine
the different feature maps at different levels. Furthermore, using the concatenated
embeddings which are used by a specific network at leaf level for visualisation is
problematic, because, unless it is an ultrametric tree, the length of these combined
feature vectors is not the same for all leaves. A straightforward way to compensate
for this is, for example, zero padding to achieve a common length, or to collect and
concatenate the embeddings from all networks just for this purpose.
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4.10 Macro-averaged Hierarchical F-score

The hierarchical F-score introduced by Kiritchenko et al. in 2005 [28] is micro-
averaged. On an unbalanced dataset such as the haematological dataset onto which
this work is focused, it might be preferable to use macro-averaging. Inspired by
the original hierarchical F-score, such a macro-averaged hierarchical F-score is in-
troduced in this section.

A hierarchical, class-wise precision of class ci can be defined as

hP (ci) =

∑n∗
i
j=1 |Ĉi ∩ Ĉ∗j |∑n∗

i
j=1 |Ĉ∗j |

, (4.18)

where
n∗i = NTP,i +NFP,i (4.19)

is the number of samples that were predicted to be from class ci, regardless of
whether this prediction is correct or incorrect. The numerator of (4.18) describes
the sum of common ancestors of the multi-label Ĉi of class ci excluding the root
and the true multi-labels Ĉ∗j of all samples that were predicted to be member of Ci.
This sum is divided by the sum of the numbers of ancestors of the correct labels
of all samples predicted to be of class ci. Following this definition, the hierarchical
class-wise precision contains contributions of all true positive and all false positive
samples, as does the precision in non-hierarchical evaluation (see equation (2.19)).

Conversely to the non-hierarchical recall (2.20), the hierarchical, class-wise recall
should consider all true positive and false negative samples. Therefore, it can be
defined as

hR(ci) =

∑ni
j=1 |Ĉi ∩ Ĉ ′j|∑ni

j=1 |Ĉi|
. (4.20)

For all
ni = NTP,i +NFN,i (4.21)

samples which are truly members of class ci, the numbers of common ancestors of
the correct multi-label Ĉi and the predicted multi-label Ĉ ′j, always excluding the
root, are summed, and divided by sum of true ancestors of the correct class.

The class-wise F-scores

hF1(ci) =
2 · hP (ci) · hR(ci)
hP (ci) + hR(ci)

(4.22)

are then averaged over all classes, resulting in the macro-averaged hierarchical F1-
score

hF1,macro =
1

n

n∑
i=1

hF1(ci). (4.23)
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In this chapter, the different experiments conducted during this work are presented.
Each experiment is divided into three sub-sections. At first, the experiment setup
is described, before the results are presented, and lastly analysed and discussed.

5.1 General Experimental Setup

Some parameters are shared among most or all experiments. These common setting
are described in the following.

5.1.1 Default Hyperparameter Settings

Unless explicitly stated otherwise, all experiments are conducted with the following
default settings and hyperparameters:

• Learning rate: α = 1 · 10−5

• Image patch size: 224 px × 224 px

• Optimiser: Adam with β1 = 0.9 and β2 = 0.999

• Transfer learning: initialisation from convolutional layers pretrained on Im-
ageNet (ILSVRC); parameters are not fixed during further training

• Data augmentation: rotation, mirroring and random cropping

• Classification loss: cross-entropy loss

• Training duration: 200 epochs

• Batch size: 16 samples per batch

• Validation score for model selection: F1,macro

These parameters are selected based on a previous hyperparameter optimisation
study [3] with additional constraints to keep GPU-memory requirements reasonably
low. Individual networks within cascades as well as the flat reference networks are
trained with these settings. The image patches are fixed to a size of 224 px ×
224 px because this corresponds to the image size of the pretrained ResNet and
DenseNet in torchvision [51]. Networks are never trained from scratch, but usually
pretrained on the ImageNet dataset. Only if specified, the networks are pretrained
on the haematological dataset. This pretraining itself is also performed utilising
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transfer learning from ILSVRC. Input images are therefore normalised based on the
characteristics of the ImageNet dataset. For this purpose, following equation (2.12),
the mean vector

µ = 255 ·

0.485
0.456
0.406

 (5.1)

is subtracted from all pixel values of the RGB images, which are subsequently divided
by the corresponding component of the standard deviation

σ = 255 ·

0.229
0.224
0.225

 . (5.2)

5.1.2 Dataset Splits and Cross-Validation
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Figure 5.1: Dataset splits for cross-validation and number of samples in each subset.

All experiments are performed with 6-fold cross-validation, as visualised in Figure
5.1. For this purpose, the dataset is divided into six sets, of which four, containing
approximately two thirds of the samples, are used for training, while 1

6
of the data are

reserved for validation and testing, respectively. Samples are not assigned randomly
to the subsets. Instead, their position within the slices is taken into account. The
slices are divided into blocks of 4096 px × 4096 px, and all cells within these blocks
are assigned to the same subset, while cells at their edges are discarded. This results
in more independent sets. However, as a side effect, the resulting set sizes can differ
relatively strongly, as is also indicated in Figure 5.1.
Every experiment is performed six times, once for each split. It should be noted

that, in theory, 6 × 5 = 30 unique dataset splits can be created from six folds.
However, because of the large number of experiments given limited computational
and temporal resources, in the following all experiments are performed only on these
six splits. Each subset, and consequently each sample, is member of the test and
validation set exactly once, respectively, hence having the same impact on the final,
averaged test score. It was empirically shown that such a 6-fold cross-validation
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can sufficiently approximate the means and standard deviations of a complete cross-
validation with all possible combinations of subsets [3].
In a cascade, the individual networks are trained only on the relevant subsets of

these sets, as discussed in Section 4.3. These subsets are created while preserving
the overall subset membership. This means that a sample that is, for example, in
the first set of the overall dataset is also in the first set of all subsets used to train
individual networks. Hence, it is assured that no sample is in the training set for one
network, but in the validation or test set for another network or the overall cascade,
which would lead to partial overfitting of the cascade and consequently invalidate
the validation and test results.
For evaluation of the performances of the classifiers, the macro-averaged F1-score,

the micro-averaged F1-score – which, as shown in Appendix A.1, is the same as the
accuracy – and the macro- and micro-averaged hierarchical F1-scores are observed.
Therefore, there is a macro-averaged measure and a micro-averaged measure both
in the usual sense as well as taking the hierarchy into account. In all experiments,
the mean values

mean =
1

k
·

k∑
i=1

pi (5.3)

as well as the unbiased standard deviations

std =

√∑k
i=1(pi −mean)2

k − 1
(5.4)

are reported, calculated from all k = 6 folds, where pi is the respective performance
score on the i-th fold.

5.1.3 Individual Networks in the Cascades and Cascade
Propagation

For individual networks in the cascades, two architectures are investigated: ResNet
and DenseNet, which have previously shown the most promising results on the
dataset [3]. Because there are multiple networks in every cascade, only their most
shallow versions are considered, which are ResNet-18 and DenseNet-121. Deeper
networks would require much more GPU-memory and time for training, and are
therefore not feasible. The different hierarchies, including the number of networks
and the resulting number of learnable parameters, are listed in Table 5.1. For more
detailed descriptions of the different hierarchies, the sections of their introduction
are also listed. In most experiments, soft, probabilistic traversal of the cascade is
performed, and – unless stated otherwise – the networks are trained individually.
Specialised methods such as pretraining on a network trained on the haematology
dataset, block sharing for feature extraction, feature forwarding, loss weights or
upsampling are not employed unless explicitly mentioned.
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Learnable parameters (in million)

ResNet ResNet DenseNet DenseNet
Hierarchy See Networks 18 152 121 201

Flat (ref.) [12, 13] 1 11.2 58.2 7.1 18.3
Full 4.4.1 8 89.4 - 55.7 -
Ultrametric 4.4.2 7 78.2 - 48.7 -
Cytoplasm features 4.4.3 7 78.2 - 48.7 -
Ratio/shape features 4.4.3 7 78.2 - 48.7 -
Nucleus features 4.4.3 7 78.2 - 48.7 -
Confusion clustering 4.4.4 5 55.9 - 34.8 -
Similarity clustering 4.4.4 6 67.0 - 41.7 -
Balanced 4.4.5 3 33.5 - 20.9 -
Random 4.4.6 8 89.4 - 55.7 -

Table 5.1: Summary of the different hierarchies, including the nomenclature used
throughout this chapter. The total number of learnable parameters is
listed for different base architectures.

5.1.4 Reference Networks

For reference, multiple flat networks are trained on the same data as the cascades.
The architectures used as reference are the previously best-performing DenseNet-121
and ResNet-152 [3], and the deeper DenseNet-201. Additionally, a flat ResNet-18
is also trained for comparison with the cascades consisting of multiple of these net-
works. The numbers of learnable parameters are stated in the first row of Table
5.1. For some experiments, an additional DenseNet-121 is trained as well, if the
methods investigated in these experiments are applicable also to single, flat classi-
fication networks. In all cases, the general training parameters are the same as for
the cascades.

5.2 Comparison of Cascade Hierarchies

In the first experiment, the different hierarchies, as introduced in Section 4.4, are
examined in the most basic setup. The experiment serves multiple purposes: on
the one hand, the general performances and other aspects of the different cascades
are evaluated and compared to flat classifiers. Furthermore, the comparison of the
hierarchies among each other could provide insight into the underlying mechanisms
and principles.

Experimental Setup

For this experiment, cascades of all nine hierarchies introduced in Section 4.4 are
evaluated in the basic setup, including separate training of the individual networks
and soft, probabilistic propagation for decision making. As reference, different flat
networks as described in 5.1.4 are trained.
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Results

The results are listed in Table 5.2, the macro averaged F-scores are additionally
visualised in Figure 5.2. The highest performances are achieved by the deepest flat
reference classifiers. In terms of the micro-averaged scores, ResNet-152 attains the
highest performance, while DenseNet-201 achieves slightly higher macro-averaged
scores. The non-hierarchical scores and their hierarchical counterparts are strongly
correlated. The Pearson correlation coefficient of F1,macro and hF1,macro is 0.941,
while the correlation coefficient between F1,micro and hF1,micro is 0.967.

F1,macro [%] F1,micro [%] hF1,macro [%] hF1,micro [%]

mean ± std mean ± std mean ± std mean ± std

Flat

RN-18 70.3 ± 2.6 76.8 ± 1.4 88.8 ± 1.4 93.8 ± 0.6
RN-152 71.4 ± 4.3 78.7 ± 1.6 89.0 ± 2.4 94.3 ± 0.7
DN-121 70.7 ± 3.1 77.9 ± 1.7 88.9 ± 1.7 94.1 ± 0.6
DN-201 71.8 ± 3.1 77.9 ± 1.3 89.8 ± 1.5 94.1 ± 0.5

Full RN-18 70.3 ± 2.2 77.1 ± 1.2 89.1 ± 1.2 94.0 ± 0.5
DN-121 70.1 ± 2.1 77.4 ± 1.0 89.2 ± 0.9 94.0 ± 0.4

Ultrametric RN-18 70.6 ± 2.3 77.4 ± 0.9 89.3 ± 1.3 94.0 ± 0.4
DN-121 70.1 ± 4.4 77.5 ± 1.9 88.5 ± 2.8 94.0 ± 0.6

Cytoplasm features RN-18 69.1 ± 2.6 76.5 ± 0.9 87.7 ± 2.1 93.5 ± 0.5
DN-121 66.4 ± 2.4 77.6 ± 1.7 84.6 ± 1.7 93.9 ± 0.7

Ratio/shape features RN-18 66.0 ± 4.1 76.1 ± 1.4 84.6 ± 5.0 93.3 ± 0.6
DN-121 63.8 ± 3.0 76.1 ± 1.4 82.8 ± 3.0 93.4 ± 0.4

Nucleus features RN-18 65.4 ± 3.6 75.2 ± 1.6 84.7 ± 3.4 93.2 ± 0.5
DN-121 65.1 ± 2.3 76.1 ± 1.5 83.9 ± 2.6 93.5 ± 0.5

Confusion clustering RN-18 66.2 ± 1.1 76.1 ± 1.0 82.5 ± 1.6 93.6 ± 0.4
DN-121 65.9 ± 0.8 77.2 ± 1.3 81.6 ± 1.8 93.8 ± 0.4

Similarity clustering RN-18 64.4 ± 1.8 76.4 ± 1.2 83.5 ± 0.6 93.6 ± 0.5
DN-121 66.9 ± 2.2 76.9 ± 1.5 85.0 ± 1.3 93.9 ± 0.5

Balanced RN-18 69.2 ± 3.5 77.3 ± 1.6 88.6 ± 1.5 93.9 ± 0.5
DN-121 70.5 ± 3.2 78.2 ± 1.8 88.8 ± 1.4 94.1 ± 0.7

Random RN-18 62.3 ± 5.1 74.8 ± 1.1 81.2 ± 5.8 93.1 ± 0.6
DN-121 67.4 ± 1.1 76.2 ± 1.4 87.7 ± 0.6 93.6 ± 0.5

Table 5.2: Average performances of the different hierarchies with ResNet (RN) and
DenseNet (DN) as base architectures.

The highest-performing cascades reach scores within the standard deviations of
the best-performing reference networks. Hierarchies with the highest scores are,
in general, the full cascade and the ultrametric taxonomy, closely followed by the
balanced hierarchy. The two hierarchies obtained by spectral clustering of the confu-
sion matrix and the medical experts’ similarity survey do not reach the scores of the
cascades oriented more closely on the biological lineages. Out of the feature-based
cascades, only the hierarchy based cytoplasm characteristics achieves an F1,macro-
score close to the reference, and this only with ResNet-18 networks as base learners.
Compared to the full hierarchy, the same tree with randomly swapped leaves

reaches much lower performances, especially in terms of the macro-averaged scores.
This is visualised in Figure 5.3, which shows the difference of the confusion matrices
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Figure 5.2: Macro-averaged F-scores of different hierarchical cascades with different
ResNet (RN) and DenseNet (DN) networks. Flat network performances
are given as reference.

of the full hierarchy and the random hierarchy. Table 5.3 lists the macro- and
micro-averaged F-scores achieved by the individual networks in these two cascades.
Hierarchical scores are not listed, because the individual networks only handle classes
from a single level in the hierarchy. While the full cascade attains considerably
higher scores in the root network and the granulopoiesis network, the networks in
the random hierarchy reach higher scores in all other nodes of the hierarchy.

Full cascade (ResNet-18) Random (ResNet-18)

F1,macro [%] F1,micro [%] F1,macro [%] F1,micro [%]

Node name mean ± std mean ± std mean ± std mean ± std

Root 78.8 ± 4.6 95.0 ± 1.0 67.6 ± 8.1 79.0 ± 0.8
Granulopoiesis 87.6 ± 9.7 97.3 ± 2.4 80.0 ± 14.1 85.9 ± 7.2
Lymphopoiesis 80.2 ± 18.9 97.6 ± 2.3 85.2 ± 13.8 89.2 ± 7.8
Erythropoiesis 83.3 ± 17.2 97.9 ± 2.1 88.9 ± 13.5 91.9 ± 8.2
Monopoiesis 80.8 ± 16.7 94.7 ± 7.7 86.4 ± 16.0 92.6 ± 7.7
Eosiniphilic gran. 80.3 ± 15.5 92.2 ± 9.6 88.7 ± 15.4 93.8 ± 7.5
Neutrophilic gran. 80.1 ± 14.4 90.6 ± 9.6 89.2 ± 14.4 93.8 ± 7.0
Erythroblast 79.4 ± 13.6 88.9 ± 10.2 90.4 ± 13.9 94.6 ± 6.8

Table 5.3: Network-wise test scores of the full hierarchy (Figure 4.5) cascade com-
pared to the random hierarchy cascade (Figure 4.17), which have the same
underlying structure, but with swapped leaves in the random hierarchy.
The node names therefore represent the position in the full hierarchy, for
the random hierarchy they do not imply actual sub-class memberships.

Table 5.4 lists the class-wise F1-scores of a flat DenseNet-121 and the three highest-
performing cascades (see Appendix A.3 for the class-wise scores of all hierarchies).
The individual scores are relatively similar. In all architectures, the promonocytes
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Figure 5.3: Difference of the confusion matrices to evaluate the performance of the
full hierarchy compared to the random hierarchy. Positive values indicate
that there are more predictions from the full hierarchy cascade.

stand out with a very low score ranging from 18.8 % for the reference and 26.3 %
achieved by the balanced hierarchy.
Regarding the individual network architectures, ResNet-18 achieve a higher F1,macro

in six out of nine cases compared to hierarchies with DenseNet-121 networks. How-
ever, the mean macro-averaged F-scores are, with 67.1 % for ResNet-18 and 67.4 %
for DenseNet-121, very close – and slightly higher for DenseNet-121.
Table 5.5 lists the test scores of the individual networks in a full hierarchy cascade

for both base architectures. Both F1,macro an F1,micro are relatively similar, both in
terms of the mean values as well as for the standard deviations. The macro-averaged
F1-scores of DenseNet-121 networks are, on average, larger than their ResNet-18
counterpart by approximately 0.2 %. For the micro-averaged F-score, the average
absolute difference is 0.1 %.

Discussion

The experimental results allow comparison of the performance of the hierarchical
cascades with individual training and soft propagation against flat networks as well
as an analysis of the different hierarchies with the two evaluated individual network
architectures.

71



5 Experiments

DenseNet-121 Full Ultrametric Balanced
(ref.) ResNet-18 ResNet-18 DenseNet-121

mean ± std mean ± std mean ± std mean ± std

Basophilic granulocyte 86.5 ± 3.5 90.0 ± 5.0 88.0 ± 4.0 88.3 ± 4.9
Eosino. gran. (immat.) 76.8 ± 7.2 79.0 ± 6.3 76.9 ± 6.7 79.1 ± 7.2
Eosino. gran. (mature) 76.1 ± 10.2 75.5 ± 8.2 78.1 ± 5.1 76.1 ± 7.4
Promyelocyte 89.0 ± 2.0 87.7 ± 2.6 88.1 ± 2.3 89.2 ± 2.1
Myelocyte 67.3 ± 6.0 66.5 ± 4.9 65.9 ± 2.8 68.8 ± 5.3
Metamyelocyte 67.1 ± 4.0 65.1 ± 2.4 64.5 ± 3.4 66.6 ± 3.0
Band granulocyte 75.9 ± 3.4 73.9 ± 2.5 75.2 ± 1.7 74.9 ± 2.8
Segmented granulocyte 88.5 ± 1.4 88.4 ± 1.1 89.2 ± 0.8 89.4 ± 1.2
Blast 55.4 ± 6.8 56.0 ± 8.7 53.5 ± 7.6 54.1 ± 3.9
Lymphocyte 76.8 ± 5.7 75.7 ± 6.7 75.9 ± 6.0 76.7 ± 5.8
Plasma cell 67.6 ± 35.2 76.1 ± 21.0 71.4 ± 17.4 72.0 ± 20.1
Proerythroblast 66.4 ± 17.5 66.5 ± 9.6 63.6 ± 22.5 59.0 ± 15.3
Erythroblast (basophilic) 70.2 ± 7.1 65.4 ± 6.7 70.6 ± 10.2 74.6 ± 10.8
Erythroblast (polychr.) 80.8 ± 4.2 80.2 ± 3.4 80.9 ± 3.7 81.4 ± 2.9
Erythroblast (orthochr.) 63.0 ± 7.0 63.0 ± 5.2 64.0 ± 6.2 60.7 ± 11.7
Megakaryopoiesis 84.9 ± 18.9 80.4 ± 21.5 87.1 ± 17.0 71.0 ± 38.3
Promonocyte 19.0 ± 19.0 18.8 ± 14.0 21.0 ± 3.5 26.3 ± 14.6
Monocyte 60.5 ± 6.9 57.9 ± 4.2 56.7 ± 11.6 61.1 ± 9.2

Table 5.4: Class-wise F1-scores of a flat DenseNet-121 and the three best-performing
cascades.

Full cascade (ResNet-18) Full cascade (DenseNet-121)

F1,macro [%] F1,micro [%] F1,macro [%] F1,micro [%]

Node name mean ± std mean ± std mean ± std mean ± std

Root 78.8 ± 4.6 95.0 ± 1.0 78.9 ± 4.6 94.9 ± 0.8
Granulopoiesis 87.6 ± 9.7 97.3 ± 2.4 87.7 ± 9.8 97.2 ± 2.4
Lymphopoiesis 80.2 ± 18.9 97.6 ± 2.3 79.7 ± 18.7 97.3 ± 2.4
Erythropoiesis 83.3 ± 17.2 97.9 ± 2.1 83.1 ± 17.3 97.7 ± 2.2
Monopoiesis 80.8 ± 16.7 94.7 ± 7.7 81.5 ± 16.2 95.2 ± 5.9
Eosiniphilic gran. 80.3 ± 15.5 92.2 ± 9.6 80.8 ± 14.9 92.5 ± 8.5
Neutrophilic gran. 80.1 ± 14.4 90.6 ± 9.6 80.6 ± 13.8 91.0 ± 8.6
Erythroblast 79.4 ± 13.6 88.9 ± 10.2 79.7 ± 13.2 89.1 ± 9.6

Table 5.5: Comparison of network-wise scores for ResNet-18 and DenseNet-121 as
base architectures in a full hierarchy cascade.

Performance Comparison with Flat Networks

In general, the results indicate that, without further adjustments, hierarchical split-
ting of the classification process does not inherently increase the classification per-
formance. The cascades, at best, come close to the reference scores, and often
perform much worse. An analysis of the class-wise F1-scores reveals that there are
no major differences between the cascades and a flat network, showing that no gains
are achieved by cascading. The worst performance, by a relatively large margin, is

72



5.2 Comparison of Cascade Hierarchies

achieved for promonocytes, which are confused with several different classes. With
only 54 samples, this class is vastly underrepresented. Furthermore – in contrast to
the even rarer, but uniquely large megakaryopoietic cells – they share more features
with other, similar cell types. For example for a flat DenseNet-121, they are mainly
confused with promyelocytes, myelocytes, blasts and monocytes, as can be seen from
the confusion matrix, which is shown in Figure 4.12 already in Section 4.4.4. All
these types have a similar appearance, including a relatively basophilic stain.

Comparison of the Different Hierarchies

The best results are achieved by the full and the ultrametric hierarchies, which are
closest related to the biological lineages of haematopoiesis. Apart from these two
hierarchies, the hierarchy with reduced class imbalance also performs reasonably
well.
The worst performing cascade is the full cascade with randomly shuffled leaves,

which consequently does not incorporate any domain knowledge. It shows that just
having more classifiers per se does not positively impact the results, and that, if
classification is performed hierarchically, the cell groupings are important.
An analysis of the difference of the confusion matrices (Figure 5.3) and the test

scores achieved by the individual networks (Table 5.3) provides some insight into
the reasons of the performance difference, as well as error propagation within the
cascades. The main reason for the performance gap lies in the root network, where
the difference both in the macro-averaged and the micro-averaged F1-score is very
large. At this first stage, the sub-classes are still a combination of many leaf-classes.
Without following the biological background knowledge by grouping similar classes
together, the intra-class variance is increased, which appears to make classification
more difficult. The same effect can be observed for the network placed at the
granulopoiesis node, which, apart from the root, has the largest child classes in terms
of the number of combined leaf-classes. Networks which are closer to the leaves
generally have less heterogeneous child-classes. For these networks, the random
interchanges of the leaves often lead to less similar – therefore easier distinguishable –
classes, which result in very good test scores of these individual networks.
The overall scores of these two cascades show that error propagation is an import-

ant mechanism in a cascade. Generally, it is very difficult for networks to overrule
their ancestors’ decisions even with the probabilistic soft propagation – in hard
propagation, it is completely impossible. This is especially the case if the networks
are overconfident, which is commonly the case for deep networks [54].
Any hierarchy that deviates from the haematological lineages, by artificially group-

ing the cells based on single features or on clustering of either the confusion mat-
rix or a similarity score given by experts, does not lead to equally good results.
This suggests that the biological background directly provides the most suitable cell
groupings. The fact that the performance gap compared to flat networks is larger in
terms of the macro-averaged scores than for the micro-averaged scores shows that
the main reason of this difference lies in the performance on the underrepresented
classes. Potentially, larger sub-classes of a combined inner class outweigh the smaller
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classes. If on the other hand more similar classes are generally combined, the smaller
classes are easier to classify within early levels, simply because they are grouped to-
gether with the most similar cells. This assumption is supported by the fact that –
as an exception – the balanced hierarchy reaches performances relatively close to
the reference. This cannot be explained solely from the hierarchy itself, although
closely related classes often have similar sizes, but from the fact that all classifiers
in this cascade handle classes of roughly similar sizes. By partly compensating for
the class imbalances of the dataset, it is less likely that one class outweighs another
class.

Comparison of the Individual Network Architectures

The comparison of base learners, either ResNet-18 or DenseNet-121, does not reveal
major advantages of one architecture over the other within a cascade. In some
experiments, one may achieve higher scores than the other, but on average, the
performances are very similar – and much more dependent on the hierarchy itself.
This is clearly visible in Figure 5.2 and in the comparison of the network-wise scores
of a full cascade in Table 5.5. Notably, the individual scores of DenseNet-121 are
slightly higher, while the cascade with ResNet-18 still achieves the higher overall
performances. In soft propagation, definitive decisions are not made at the individual
networks, but are determined from the overall confidences. These confidences are not
accounted for by the individual scores, as well as other effects, such as the influence
of samples that are not from a child class of a network. Which architecture leads
to higher overconfidences, and how this affects the performances of the cascades,
requires further investigation.

5.3 Comparison of Training Strategies

In Chapter 4.3, two different training strategies for hierarchical cascades have been
introduced. In the following, separate training of the individual networks is com-
pared to end-to-end training of the entire cascade at once.

Experimental Setup

The two training procedures are employed on the full (Section 4.4.1) and the ul-
trametric (Section 4.4.2) hierarchy cascade, which have achieved the highest per-
formances in the previous experiment. End-to-end training requires significantly
more GPU-memory compared to individual training, because gradients within all
networks have to be stored at once. For this reason, only ResNet-18 is selected as
the base architecture due to lower memory requirements compared to DenseNet-
121. For the end-to-end training, either the cross-entropy loss or the tree loss as
defined in 4.3.2 is applied. Regardless of the cascade, the tree loss is calculated from
the distances in the actual haematological cell hierarchy. The tree loss introduces
weights to the cross-entropy components that are, on average, larger than one. For
evaluation of their effect, the experiments using the standard cross-entropy loss are
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performed twice, once with the standard learning rate of α = 1 · 10−5 and once with
an increased learning rate α = 5 · 10−5. Because hard propagation does not guaran-
tee well defined gradients, probabilistic (soft) propagation is performed within the
cascades both during training and test time.

Results

Table 5.6 lists the performances of individual training and end-to-end training for
cascades in form of the full and the ultrametric hierarchy. Additionally, the macro-
averaged F-scores are visualised in Figure 5.4. For all four scores and both hier-
archies, the individual training outperforms end-to-end training. The differences
are especially pronounced for the macro-averaged scores.

F1,macro [%] F1,micro [%] hF1,macro [%] hF1,micro [%]

Training Loss α
10−5 mean ± std mean ± std mean ± std mean ± std

Fu
ll

separate CE 1 70.3 ± 2.2 77.1 ± 1.2 89.1 ± 1.2 94.0 ± 0.5
end-to-end CE 1 66.4 ± 3.8 76.9 ± 1.7 84.7 ± 3.7 93.9 ± 0.7
end-to-end CE 5 64.0 ± 4.3 76.9 ± 2.1 79.9 ± 3.4 93.7 ± 0.5
end-to-end tree 1 60.1 ± 1.2 75.1 ± 1.0 75.7 ± 0.7 93.1 ± 0.4

U
lt
ra
m
et
ri
c separate CE 1 70.6 ± 2.3 77.4 ± 0.9 89.3 ± 1.3 94.0 ± 0.4

end-to-end CE 1 67.2 ± 3.7 76.6 ± 1.3 85.3 ± 2.8 93.8 ± 0.4
end-to-end CE 5 62.7 ± 3.3 77.3 ± 1.9 77.5 ± 2.7 93.9 ± 0.6
end-to-end tree 1 62.7 ± 2.6 75.5 ± 1.8 80.0 ± 1.0 93.4 ± 0.5

Table 5.6: Performance of different training strategies, separated by the hierarchy of
the cascade.
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Figure 5.4: Scatter plot of the test results for the different training strategies.

Figure 5.5 displays the development of the macro-averaged validation-F1-score and
the training and validation losses for the ultrametric hierarchical cascade. Similar
plots for the full hierarchy can be found in Appendix A.4. Consistent with the test
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result, the validation score is very similar to the score of the cross-entropy loss with
α = 5 · 10−5 and, when converged, slightly lower than with the lower learning rate.
Initially, the tree loss is considerably higher than the unweighted cross-entropy loss.
During training, the slope of the tree loss is much larger than for the cross-entropy
loss, as is the variability of the loss. While the initial validation loss is larger for the
tree loss, it converges to a similar mean level as the cross-entropy losses, albeit with
a much higher variability.
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Figure 5.5: Development of the validation-F1,macro-score and the different training
and validation losses for end-to-end training of the ultrametric cascade.
The highlighted lines are the respective averages over all six folds.

Discussion

The results of this experiment show that individual training of the networks clearly
outperforms end-to-end training of the entire cascade at once. This is especially
true for the macro-averaged scores, which indicates that the individually trained
networks can handle underrepresented classes better.

In end-to-end training, the different loss functions and learning rates have an
influence on the performance. Although it accounts for the cell hierarchy, the hier-
archical loss does not generally improve the results, which agrees with conclusions
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Wu et al. [30] have drawn for their own hierarchical loss. From the development of
the loss during training (Figure 5.5), some insight into the reasons can be deducted.
Firstly, the additional hierarchical weights cause the initial loss to be much larger
than the plain cross-entropy loss. This leads to large gradients, which might cause
overshoot during training. While this could be compensated by either a constant
factor to the loss or a reduced learning rate, the weights also lead to higher variab-
ility in the loss. This variability can be explained from the different weight factors
that get introduced as soon as one or more samples are misclassified with a relat-
ively distant class. Even though these factors are weighted by the confidence of the
network, such false predictions have a strong influence as soon as the networks are
overconfident. To reduce this problem, it might be beneficial to drastically increase
the batch size to average over more samples at once, however, this has practical
limitations, and requires further investigation.

Regardless of the loss, individual training is preferable, especially for unbalanced
datasets. Apart from the higher performance scores, it provides other benefits such
as a higher adaptability of the cascades. Furthermore, separate training has sig-
nificantly lower computational requirements, because only the gradients of a single
network need to be calculated and stored, instead of having to adjust all weights in
all networks in one step. Based on the results of this experiment, individual training
is the method of choice in all subsequent experiments.

5.4 Comparison of Deterministic and Probabilistic
Propagation

After the different hierarchies have been compared using soft propagation in Section
5.2, its deterministic alternative is examined in the following experiment.

Experimental Setup

For the first experiment (Section 5.2), the networks in the nine different cascades
have been trained separately. Therefore, these networks are re-used for this exper-
iment, since the propagation method has no influence on the networks themselve.
Consequently, for a comparison of the two prediction methods, only the testing
phase needs to be repeated, this time using hard instead of soft propagation.

Results

The results for probabilistic traversal have already been presented in Section 5.2.
The scores for hard propagation are given in Table 5.7.
Performance differences between the two strategies are marginal, as visualised

in Figure 5.6. Averaged over all 18 experiments – nine different hierarchies each
with ResNet-18 and DenseNet-121 as base architecture – the probabilistic traversal
leads to approximately 0.05 % higher macro-averaged F-scores. In 14 cases, the
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F1,macro [%] F1,micro [%] hF1,macro [%] hF1,micro [%]

mean ± std mean ± std mean ± std mean ± std

Full RN-18 70.2 ± 2.1 77.1 ± 1.2 89.1 ± 1.1 94.0 ± 0.5
DN-121 70.2 ± 2.1 77.4 ± 1.0 89.3 ± 0.9 94.0 ± 0.4

Ultrametric RN-18 70.8 ± 2.7 77.5 ± 1.0 89.4 ± 1.4 94.0 ± 0.4
DN-121 70.1 ± 4.6 77.4 ± 1.9 88.5 ± 2.9 93.9 ± 0.6

Cytoplasm features RN-18 69.1 ± 2.6 76.6 ± 0.9 87.7 ± 2.2 93.5 ± 0.5
DN-121 66.2 ± 2.4 77.5 ± 1.6 84.6 ± 1.8 93.9 ± 0.7

Ratio/shape features RN-18 66.0 ± 4.1 76.1 ± 1.5 84.6 ± 5.0 93.3 ± 0.6
DN-121 63.7 ± 2.9 76.0 ± 1.4 82.7 ± 3.0 93.4 ± 0.4

Nucleus features RN-18 65.5 ± 3.5 75.2 ± 1.6 84.8 ± 3.3 93.2 ± 0.5
DN-121 65.0 ± 2.3 76.1 ± 1.6 83.9 ± 2.6 93.5 ± 0.5

Confusion clustering RN-18 66.2 ± 1.1 76.1 ± 1.0 82.5 ± 1.6 93.6 ± 0.4
DN-121 65.8 ± 0.8 77.2 ± 1.3 81.6 ± 1.8 93.8 ± 0.4

Similarity clustering RN-18 64.3 ± 1.9 76.4 ± 1.1 83.5 ± 0.7 93.6 ± 0.5
DN-121 66.9 ± 2.2 76.9 ± 1.5 85.0 ± 1.3 93.9 ± 0.5

Balanced RN-18 69.1 ± 3.5 77.2 ± 1.6 88.5 ± 1.5 93.9 ± 0.5
DN-121 70.5 ± 3.2 78.1 ± 1.8 88.7 ± 1.4 94.1 ± 0.7

Random RN-18 62.3 ± 5.1 74.8 ± 1.1 81.6 ± 5.2 93.1 ± 0.5
DN-121 67.1 ± 1.4 76.1 ± 1.5 87.5 ± 0.7 93.5 ± 0.5

Table 5.7: Scores for hard, deterministic cascade propagation.

probabilistic propagation performs better in terms of F1,macro, by an absolute increase
of at most 0.3 %, while the deterministic method achieves a higher score in four cases,
with a margin up to 0.2 %. For the hierarchical macro-averaged F-score, the average
difference is below 0.1 %.

Discussion

Even though, on average, the probabilistic traversal attains marginally higher non-
hierarchical F-scores than hard propagation, the differences are negligible.
A possible explanation for this observation lies in the overconfidence of deep net-

works with softmax activation [54]. Usually, one component of the output from the
softmax function is very close to one, while all others are nearly zero. Consequently,
it is very unlikely for a later network to overrule a predecessor.This means that,
given overconfident networks, the two strategies are practically equivalent with re-
spect to the overall outcome when performing classification. It also indicates a high
dependency on the performances of early networks when aiming to improve hier-
archical evaluation measures, because later networks are rarely able to outweigh the
confidences of their ancestors. An error in the output of an early network most likely
leads to a hierarchically very distant misclassification – in hard and soft propaga-
tion alike. For this reason, the difference of the results might become much more
pronounced if the softmax function is replaced or extended in the future to achieve
more accurate confidence values. However, this requires further investigation.
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Figure 5.6: Mean macro-averaged F-scores with hard and soft propagation, com-
pared for the different hierarchies with cascades of ResNet-18 and
DenseNet-121 networks.

5.5 Regressors

A cascade of networks allows for more diversity of network types. For the following
experiment, some classifiers are replaced by regressors to estimate the maturation
of neutrophilic and eosinophilic granulocytes. The goal of this experiment is to
evaluate the output of such regressors compared to classifiers individually as well as
when embedded into a cascade of networks.

Experimental Setup

For this experiment, only the full hierarchy cascade (Section 4.4.1) is examined,
because it contains specialised networks for neutrophilic and eosinophilic granulo-
cytes, respectively. These two classifiers are replaced by regressors with the same
base architecture to estimate the maturation of the samples. Consequently, the only
architectural difference compared to previous experiments is the output linear layer –
in regressors only consisting of a single neuron with one output – and the lack of
an output activation function. The networks, pretrained on ImageNet, are trained
using targets as discussed in Section 4.5, ranging from zero for the most immature
to four for the most mature stage. Mean squared error (MSE) is applied as the loss
function of the regressors. In context of the whole cascade, the regression output
is transformed into classification by thresholding, as described in Section 4.5. The
same transformation is also performed during validation. Because the regressors
do not provide probabilistic confidences, the overall predictions are obtained by em-
ploying the hard propagation method. As for the classifiers, the model state adopted
for testing of the regressors is selected based on the highest macro-averaged F1-score
reached on the validation set.
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Results

F1,macro [%] F1,micro [%] hF1,macro [%] hF1,micro [%]

mean ± std mean ± std mean ± std mean ± std

Classification RN-18 70.2 ± 2.1 77.1 ± 1.2 89.1 ± 1.1 94.0 ± 0.5
DN-121 70.2 ± 2.1 77.4 ± 1.0 89.3 ± 0.9 94.0 ± 0.4

Regression RN-18 69.3 ± 2.2 76.2 ± 1.6 88.8 ± 1.2 93.7 ± 0.7
DN-121 68.9 ± 2.4 76.7 ± 1.1 88.7 ± 1.1 93.9 ± 0.4

Table 5.8: Overall cascade performances with regression compared to classification
when using deterministic cascade propagation in the full hierarchy.

Results of the entire cascades with regression and with classification with determ-
inistic cascade propagation are shown in Table 5.8. With regression, all performance
measures are slightly lower than with classification. For further inspection, the in-
dividual scores of the relevant networks which have been replaced by regressors are
examined. Neither the macro-averaged, nor the micro-averaged F1-score or any of
the hierarchical scores previously defined distinguishes between close or more dis-
tant misclassifications if the classes are siblings in the hierarchy. For this purpose,
the frequency that cells are classified neither correctly nor as a direct predecessor
or successor of their true maturity stage is observed. Table 5.9 lists both F1-scores,
as well as this non-neighbour-rate (NNR) only of the regressors, compared to the
corresponding classifiers.

F1,macro [%] F1,micro [%] NNR

Lineage Architecture Type mean ± std mean ± std %

neutrophilic
ResNet-18 classification 78.6 ± 1.6 81.5 ± 1.1 1.86

regression 76.7 ± 1.4 80.0 ± 1.0 0.73

DenseNet-121 classification 79.3 ± 0.9 82.4 ± 0.8 1.40
regression 78.7 ± 0.7 81.4 ± 0.8 0.61

eosinophilic
ResNet-18 classification 78.1 ± 7.9 79.7 ± 8.3 -

regression 76.7 ± 4.8 78.9 ± 5.4 -

DenseNet-121 classification 77.0 ± 4.9 78.6 ± 5.4 -
regression 78.9 ± 6.7 80.6 ± 6.8 -

Table 5.9: Performance comparison of the individual regression and classification net-
works for neutrophilic and eosinophilic granulocytes. As an additional
measure of closeness of predicted classes to the true labels, the non-
neighbour-rate (NNR) is given.

The F-scores are very close, although in three out of four cases the scores are
slightly higher for classification. However, there is a considerable difference in the
non-neighbour-rates. These are also listed in Table 5.9 for the neutrophilic granulo-
cytes. For all approaches, the non-neighbour-rate is below 2 %. Compared to
unordered classification, it is more than halved for both architectures when using
regression. This is also visualised by the difference confusion matrix shown in Figure
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Figure 5.7: Difference of the confusion matrices for regression and classification on
neutrophilic granulocytes. Positive values indicate more predictions from
the regressor, negative values indicate more predictions from the classi-
fier.

5.7. For eosinophilic granulocytes with only two classes, the non-neighbour-rate is
not a meaningful measure.

Figure 5.8 shows the outputs y of a regressor compared to the corresponding cor-
rect target labels t in form of box plots. The targets are ordered by maturity, starting
from 0 for neutrophilic promyelocytes or immature eosinophilic granulocytes up to
4 for segmented neutrophilic granulocytes and mature eosinophilic granulocytes.

For neutrophilic granulocytes, all boxes completely lie within the correct decision
intervals and in most cases are nearly centred therein. All values lie within the range
between -0.5 and 4.5, therefore the distance to the closest target never exceeds 0.5.
The largest shifts with respect to the true label are observed for metamyelocytes (la-
bel 2) and segmented granulocytes (label 4), which both are slightly shifted towards
band granulocytes (label 3). The boxes have different sizes, especially for promyel-
ocytes and – to a lesser extent – segmented granulocytes the distributions are very
narrow. Outliers only relatively rarely lie in non-neighbouring decision intervals.

For the eosinophilic granulocytes, the boxes are larger, as the output values are
more spread. Futhermore, the output of the regressor is clearly biased towards the
centre for both classes, such that the boxes are not centred on the target values.
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Figure 5.8: Box plots of the ResNet-18 regressor test outputs y for neutrophilic and
eosinophilic granulocytes depending on the true class label t. Target
values are ordered by increasing maturity.

Discussion

The classification performance of the regressors is slightly inferior to classifiers in
terms of the classical evaluation scores. However, although the relative amount of
misclassifications into non-neighbouring classes is very low already for classification,
regression shows an even smaller number of distant misclassifications. This is illus-
trated by the difference confusion matrix in Figure 5.7. While in total there are 68
more false predictions for regression – calculated from the sum of values outside the
main diagonal – all cases where there are more misclassifications with regression lie
on the secondary diagonals. This can be explained from the fact that regression
incorporates the ordinal character of the classes, and that the mean squared error
penalises the distances of the output values to the targets quadratically instead of
treating every false prediction equally. Therefore, even if for example F1,macro is
similar or even slightly higher for classification, regression might be the more ap-
propriate approach, depending on the particular use case and requirements to the
classifier. Additionally, it provides an actual maturity measure, which goes bey-
ond class membership. The cascading allows this measure to be combined with
classification for all classes, where regression is not suitable. On the other hand, a
disadvantage of using regression in the context of a whole cascade of networks is the
lack of a confidence measure. This essentially limits the passage through the cascade
to the greedy, deterministic propagation method, unless some additional confidence
measure is introduced in the future.
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The output values for neutrophilic promyelocytes are very narrowly distributed
around the correct label. This indicates that, for the regressor, a distinction to mye-
locytes is relatively easy and sharp. This may for example be caused by the different
cytoplasm colour – basophilic (blue) in promyelocytes and pink in myelocytes [7] –
which allows a good distinction between these two classes. A relatively narrow dis-
tribution is also observed for cells of the class of segmented granulocytes, which lie
on the other end of the scale. A possible reason for the slight shift of the output
of both segmented granulocytes and metamyelocytes towards band granulocytes is
that between these three classes there are no cell divisions, but the changes hap-
pen gradually. The differences between these three classes therefore are less clear
and based solely on definitions, for example by the ratio of the narrowest to the
widest section of the nucleus. Therefore, there often might be samples where it is
particularly difficult to exactly determine the correct class membership. This might
be true not only for the regressors, but also for the annotations of the cells by the
medical experts. Especially given only the small performance differences between
classification and regression, it is not clear how much influence potentially incorrect
annotations in borderline cases might have. This requires further investigation in
the form of an inter-rater study to further validate the existing annotations. The
regression value can potentially provide a measure of this uncertainty for the in-
dividual samples, as it assigns not only a fixed class label, but also a measure of
closeness to the other classes.
For eosinophilic granulocytes, the analysis is more difficult than for neutrophilic

granulocytes, because there are significantly fewer samples in the dataset. Addi-
tionally, the classes are more diverse, because of the culmination of different classes
into only two, more general classes. Both these factors may contribute to the lower
classification scores as well as the larger spread of the output values, including the
bias towards the decision boundary.

5.6 Weight Initialisation

So far, all networks have been initialised from weights of networks trained on the
ImageNet dataset. In this experiment, this approach is compared to pretraining on
the haematological dataset.

Experimental Setup

In this experiment, the weights of all individual networks are initialised from a flat
network trained on the haematology dataset, instead of the ImageNet dataset. The
experiment is conducted for the two best-performing cascades, and additionally for
the feature-based cascade based on nucleus features. For initialisation, the weights
from reference networks are adapted, which have been trained for 200 epochs with
the same basic training parameters as listed in Section 5.1.1. Importantly, the
cross-validation splits, as described in Section 5.1.2, for this initialisation network
training are assured to be consistent with the subsets used for cascade training.
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Apart from the changes to transfer learning, the setup is kept as basic as possible.
The initialised individual classification networks are trained separately for 200 more
epochs – with weight updates both for the fully connected output layers as well as
for the initialised convolutional layers. During the testing phase, soft propagation
is performed to determine the predictions.

Results

Table 5.10 lists the performance scores of the pretrained cascades compared to the
cascades trained based on ImageNet. The macro-averaged F1-scores are visualised in
Figure 5.9. For all three hierarchies, the cascade starting from networks pretrained
on the haematology dataset show increases of all performance measures. Regarding
the macro-averaged F1-score, an average absolute improvement of approximately
2.3 % is achieved, for the micro-averaged F-score the average improvement is 0.8 %.
For the hierarchical scores, the improvements are slightly smaller than for their non-
hierarchical counterparts. With pretraining on the haematology dataset, hF1,macro is
increased by 1.4 % on average, hF1,micro by 0.2 %. The biggest relative and absolute
improvements are achieved for the feature-based hierarchy, however, the resulting
scores remain slightly lower to the other two hierarchies, both with and without
pretraining on the haematology dataset.

F1,macro [%] F1,micro [%] hF1,macro [%] hF1,micro [%]

mean ± std mean ± std mean ± std mean ± std

Full

RN-18 70.3 ± 2.2 77.1 ± 1.2 89.1 ± 1.2 94.0 ± 0.5
RN-18, pre. 71.6 ± 3.5 77.6 ± 1.6 89.6 ± 1.8 94.1 ± 0.6
DN-121 70.1 ± 2.1 77.4 ± 1.0 89.2 ± 0.9 94.0 ± 0.4
DN-121, pre. 71.1 ± 2.9 77.8 ± 1.7 89.2 ± 1.6 94.1 ± 0.5

Ultrametric

RN-18 70.6 ± 2.3 77.4 ± 0.9 89.3 ± 1.3 94.0 ± 0.4
RN-18, pre. 71.8 ± 3.0 77.4 ± 1.6 89.5 ± 1.7 94.0 ± 0.6
DN-121 70.1 ± 4.4 77.5 ± 1.9 88.5 ± 2.8 94.0 ± 0.6
DN-121, pre. 71.5 ± 3.7 78.1 ± 1.3 88.8 ± 2.5 94.2 ± 0.5

Nucleus features

RN-18 65.4 ± 3.6 75.2 ± 1.6 84.7 ± 3.4 93.2 ± 0.5
RN-18, pre. 70.1 ± 4.1 76.9 ± 1.2 88.1 ± 2.8 93.7 ± 0.5
DN-121 65.1 ± 2.3 76.1 ± 1.5 83.9 ± 2.6 93.5 ± 0.5
DN-121, pre. 69.5 ± 3.2 77.6 ± 1.8 87.8 ± 2.2 93.9 ± 0.7

Table 5.10: Results with (pre.) and without pretraining on the haematological data-
set for three different cascades, the full hierarchy, the ultrametric hier-
archy and the hierarchy based on nucleus features.

Discussion

Pretraining on the haematology dataset consistently leads to improvements com-
pared to transfer learning based on the ImageNet dataset. The increase of especially
the macro-averaged scores indicates that a considerable gain is achieved for under-
represented classes. The greatest improvement is attained for the feature-based
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Figure 5.9: Scatter plot of the test results for pretraining on ImageNet (IN) the
haematological dataset (H).

hierarchy that performed worse than the others when pretrained on ImageNet. This
indicates that it is difficult to learn appropriate features if the cell types are grouped
as in this hierarchy. It underlines that even with pretraining on the target dataset,
the hierarchies remain an important factor influencing the classification perform-
ances.
The major disadvantage of the pretraining is that it already requires the same

time and resources as the whole training of a flat network of the same architecture.
On the other hand, this additional effort is profitable, as the performances of the
best-performing cascades with pretraining exceed those of flat reference networks
with the same base architecture (compare Table 5.2). Equal gains for continued
training of the flat networks alone are questionable, as the validation scores of these
networks converge relatively early already during the initial training (see Figure A.2
in Appendix A.5).

5.7 Loss Weights and Oversampling

In this experiment, the effects of the methods addressing the class imbalance on
hierarchical cascades are evaluated when applied to cascades as well as flat networks.

Experimental Setup

In the first part of the experiment, the individual networks are trained not with
the standard, unweighted cross-entropy loss, but with weighted cross-entropy loss
(WCE). Loss weights are calculated for each network in the cascade separately. The
experiment is performed for the exponents

δ ∈ {0, 0.5, 1, 2}, (5.5)

where δ = 0 is the standard, unweighted case.

85



5 Experiments

In the second part of the experiment, oversampling of underrepresented classes is
performed. The upsampling is employed individually to each network of the cascades
with oversampling exponents of

ν ∈ {0, 0.5}. (5.6)

This means that for every network the classes are either not oversampled, or over-
sampled by the square root of the relative frequency compared to the most frequent
class handled by that network.
In both parts of the experiment, all networks are classifiers pretrained on the

ImageNet dataset, and soft propagation is performed to determine the predictions
of the cascades. As the cascades, the full hierarchy directly derived from the cellular
relationships and the ultrametric hierarchy are examined. For comparison, WCE
and oversampling are also employed on a flat DenseNet-121.

Results

The performances with WCE and oversampling listed in Table 5.11 and are visu-
alised in Figure 5.10. For the micro-averaged F-score and the micro-averaged hier-
archical F-score, the highest results are consistently achieved for the unweighted
case (δ = 0). Both the non-hierarchical and the hierarchical macro-averaged scores
show a slight increase for δ = 0.5 compared to δ = 0, however, this is not the case
for the ultrametric hierarchical cascade. For the most extreme loss weights (δ = 2),
the macro-averaged scores are much lower than for the unweighted case.

F1,macro [%] F1,micro [%] hF1,macro [%] hF1,micro [%]

δ ν mean ± std mean ± std mean ± std mean ± std

Flat

0 0 70.7 ± 3.1 77.9 ± 1.7 88.9 ± 1.7 94.1 ± 0.6
0.5 0 71.5 ± 2.5 77.9 ± 1.7 89.4 ± 1.4 94.1 ± 0.5
1 0 70.3 ± 2.3 76.5 ± 1.3 88.9 ± 1.2 93.7 ± 0.6
2 0 70.0 ± 2.3 75.5 ± 1.9 88.7 ± 1.4 93.4 ± 0.6
0 0.5 72.3 ± 2.7 77.8 ± 1.2 89.7 ± 1.4 94.0 ± 0.5

Full

0 0 70.3 ± 2.2 77.1 ± 1.2 89.1 ± 1.2 94.0 ± 0.5
0.5 0 70.9 ± 3.1 76.8 ± 1.4 89.4 ± 1.6 93.8 ± 0.6
1 0 69.4 ± 3.4 75.7 ± 1.9 88.5 ± 1.6 93.4 ± 0.6
2 0 66.9 ± 3.2 72.6 ± 1.8 87.5 ± 1.6 91.5 ± 0.9
0 0.5 70.9 ± 3.0 76.8 ± 1.6 89.4 ± 1.5 93.8 ± 0.6

Ultrametric

0 0 70.6 ± 2.3 77.4 ± 0.9 89.3 ± 1.3 94.0 ± 0.4
0.5 0 69.6 ± 2.5 76.3 ± 1.1 89.1 ± 1.2 93.7 ± 0.4
1 0 70.1 ± 3.6 76.3 ± 1.7 89.0 ± 1.9 93.7 ± 0.7
2 0 63.3 ± 4.4 70.3 ± 2.1 85.5 ± 2.9 90.6 ± 0.9
0 0.5 69.6 ± 2.1 76.9 ± 0.9 88.8 ± 1.1 93.8 ± 0.5

Table 5.11: Performances of flat DenseNet-121 and the cascades with ResNet-18 as
base architecture for different loss weights.

Consistently, oversampling is correlated with decreased micro-averaged perform-
ance scores. Such a decrease is also observed in the macro-averaged scores for the ul-
trametric cascade. However, for the full hierarchy cascade and especially for the flat
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DenseNet-121 classifier, the oversampling leads to increases of both macro-averaged
scores.
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Figure 5.10: Scatter plots of the test results with loss weights and oversampling in a
flat DenseNet-121 and the full and ultrametric hierarchy cascades with
ResNet-18 as base architecture.

Discussion

The effects of both loss weights and oversampling to compensate for class imbalances
are much stronger for the flat classifier than for the cascades. For the weighted
cross-entropy loss, the improvements of the macro-averaged scores are the largest
for the most moderate weights (δ = 0.5). The oversampling only considerably
improved the macro-averaged performance of the flat DenseNet-121, but has a much
smaller effect on the cascades. This is a small deviation from results from previous
investigations [3], which found that oversampling only led to overfitting without
improving performance of a flat network. Whether this improvement is caused
by the inclusion of more classes, or by the more moderate oversampling – in [3],
effectively ν = 1 was employed – is beyond the scope of this work and requires
further investigation. For the hierarchical, cascaded approach, the results show that
these two methods, if at all, can improve the performances only by a small margin,
and should be employed carefully.

5.8 Shared Blocks for Feature Extraction

The goal of the following experiment is to investigate the effects of sharing a certain
amount of convolutional layers as a common feature extraction network, as described
in Section 4.7.
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Experimental Setup

For this experiment, the full hierarchy is examined, because it has the largest number
of networks, so a potential difference is expected to have the biggest effect. The
shared, fully convolutional feature extractor network is not further adjusted during
training, as motivated in Section 4.7. For this reason, both the shared and the
individual networks are pretrained on the haematology dataset.

Results

The results for block sharing based on the full hierarchy are presented in Table
5.12. For ResNet-18 as the base architecture, the differences between the scores
are marginal. On the other hand, only the scores for no shared blocks and one
shared block in DenseNet-121 are very similar, but subsequently decrease when more
blocks are shared. As visualised in Figure 5.11, there is a very small improvement
in the macro-averaged, non-hierarchical F-score when sharing one block compared
to completely separate networks.

F1,macro [%] F1,micro [%] hF1,macro [%] hF1,micro [%]

mean ± std mean ± std mean ± std mean ± std

R
es
N
et
-

18

0 blocks shared 71.6 ± 3.5 77.6 ± 1.6 89.6 ± 1.8 94.1 ± 0.6
1 blocks shared 71.9 ± 2.8 77.5 ± 1.2 89.4 ± 1.3 94.0 ± 0.5
2 blocks shared 71.7 ± 2.6 77.3 ± 1.2 89.4 ± 1.2 94.0 ± 0.5
3 blocks shared 71.4 ± 3.4 77.4 ± 1.1 89.3 ± 1.6 94.1 ± 0.5

D
en
se
N
et
-

12
1

0 blocks shared 71.1 ± 2.9 77.8 ± 1.7 89.2 ± 1.6 94.1 ± 0.5
1 blocks shared 71.3 ± 3.4 77.8 ± 1.1 89.4 ± 1.8 94.1 ± 0.6
2 blocks shared 69.8 ± 3.1 76.8 ± 1.7 88.8 ± 1.7 93.8 ± 0.6
3 blocks shared 66.9 ± 4.4 75.9 ± 1.4 86.7 ± 3.1 93.3 ± 0.6

Table 5.12: Results of block sharing with the full hierarchy for both base architec-
tures.

Discussion

The results show that the classification performance of a hierarchy with ResNet-18
as base learners is not strongly affected by the block sharing. For DenseNet-121
on the other hand, fixing two or more blocks considerably reduces both the macro-
averaged as well as the micro-averaged F-score and the hierarchical scores. This
can be explained from the number of parameters in the respective blocks of the
two architectures (compare Table 4.2). In ResNet-18, the fourth block contains
approximately 75 % of the learnable parameters, therefore, even sharing the first
three blocks means that only a quarter of the parameters are fixed. For DenseNet-
121 on the other hand, the parameters are more evenly distributed among the blocks.
Therefore, a much larger relative amount of features is shared – and consequently
fixed – than in its ResNet counterpart. In DenseNet-121, sharing three blocks leaves
only approximately 30% of the parameters to be trained individually.

88



5.9 Feature Forwarding

0 1 2 3

shared blocks

0.60

0.65

0.70

0.75

0.80
F
1
,m

ac
ro

ResNet-18

folds mean

0 1 2 3

shared blocks

DenseNet-121

folds mean

Figure 5.11: Scatter plot of the test results with a shared feature extractor.

The first convolutional layers cover relatively basic features such as edges. As the
results show, sharing these layers and not training them further for the specific sub-
tasks does not decrease the performance, which indicates that these basic features
are relatively universal. On the other hand, the more advanced features in the
second and third block profit from individual training, as can be seen especially for
DenseNet-121. This indicates that in a cascade, the networks do learn specialised
features suitable for the specific task within the hierarchy, instead of relying only
on the general features which are provided by the pretrained, fixed and shared
layers. Consequently, the amount of shared convolutional layers should be selected
carefully to preserve the abilities of the networks to learn appropriate features for
their individual tasks. Sharing only a low number of parameters, however, also
entails that the improvements in training and general prediction speed are negligible.

5.9 Feature Forwarding

In the last experiment, the cascades are extended by feature forwarding, as intro-
duced in Section 4.9. The main goals of this experiment are not only to evaluate
potential effects on the classification performance of the cascades, but also to exam-
ine the use of the embeddings for model visualisation.

Experimental Setup

This experiment is conducted for the two best-performing cascades, the full and
ultrametric hierarchy. The networks within the cascades are extended by an addi-
tional fully connected layer to obtain embedding vectors with nemb = 100 elements
from the output of the convolutional parts of the networks. Both ResNet-18 and
DenseNet-121 are examined as the underlying architecture of the networks within
the cascade. The individual networks are pretrained on the haematology dataset.
As described in more detail in Section 4.9, the training of the networks is performed
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separately but in order as given by the hierarchy, starting from the root. During
test time, soft traversal is performed to obtain the final predictions, extended by the
successive concatenation of the embedding vectors introduced by feature forward-
ing. In additional runs, the feature forwarding is applied together with moderate
loss weights with δ = 0.5 or oversampling with an exponent of ν = 0.5.
Apart from the performance aspects, one goal of this experiment is to employ

the embedding vectors for visualisation of the learnt feature spaces. Unsupervised
UMAP [43] can be utilised to visualise the embeddings of all samples in the two-
dimensional space. For the overall model, all embedding vectors are concatenated
before applying the dimensionality reduction.

Results

The performances of the full and the ultrametric hierarchy with feature forwarding
are given in Table 5.13. For the full cascade, feature forwarding leads to an average
absolute improvement of F1,macro by 0.8 % for ResNet-18 as base architecture and 0.9
% for DenseNet-121. On the other hand, for the ultrametric hierarchical approach,
there is a small improvement by 0.5 % for ResNet-18 and a small performance
decrease by 0.3 % for DenseNet-121. These cross-validation results are, exemplary
for F1,macro, visualised in Figure 5.12. The other measures show similar changes.

F1,macro [%] F1,micro [%] hF1,macro [%] hF1,micro [%]

mean ± std mean ± std mean ± std mean ± std

Fu
ll

ResNet-18, pre. 71.6 ± 3.5 77.6 ± 1.6 89.6 ± 1.8 94.1 ± 0.6
ResNet-18, pre., FF 72.4 ± 3.5 78.0 ± 1.9 90.0 ± 1.6 94.2 ± 0.8
DenseNet-121, pre. 71.1 ± 2.9 77.8 ± 1.7 89.2 ± 1.6 94.1 ± 0.5
DenseNet-121, pre., FF 72.0 ± 2.4 78.4 ± 1.3 89.6 ± 1.1 94.3 ± 0.6

U
lt
ra
m
et
ri
c ResNet-18, pre. 71.8 ± 3.0 77.4 ± 1.6 89.5 ± 1.7 94.0 ± 0.6

ResNet-18, pre., FF 72.3 ± 4.3 78.2 ± 1.6 89.9 ± 1.9 94.2 ± 0.7
DenseNet-121, pre. 71.5 ± 3.7 78.1 ± 1.3 88.8 ± 2.5 94.2 ± 0.5
DenseNet-121, pre., FF 71.2 ± 3.5 77.8 ± 1.5 88.8 ± 2.0 94.1 ± 0.6

Table 5.13: Results with feature forwarding (FF) in the full hierarchical cascade and
the ultrametric cascade.

Table 5.14 lists the results of combinations of feature forwarding with weighted
cross-entropy loss (δ = 0.5) and with oversampling (ν = 0.5). In no cases, these
combinations attain higher scores than feature forwarding with pretraining alone.
Figure 5.13 provides an example visualisation of the embeddings of the three net-

works in the full hierarchy cascade on the path from the root to the different types of
neutrophilic granulocytes. The embedding vectors generated for individual samples
by the convolutional part of the respective networks are visualised as points in a scat-
ter plot. Figure 5.14 shows a dimensionality reduction of the concatenated feature
vectors from all eight networks in a full hierarchy cascade with feature forwarding.
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Figure 5.12: Scatter plots of macro-averaged F-scores achieved in the six different
folds with feature forwarding.

F1,macro [%] F1,micro [%] hF1,macro [%] hF1,micro [%]

δ ν mean ± std mean ± std mean ± std mean ± std

ResNet-18
0 0 72.4 ± 3.5 78.0 ± 1.9 90.0 ± 1.6 94.2 ± 0.8
0.5 0 71.2 ± 3.4 77.4 ± 1.4 89.4 ± 1.9 94.0 ± 0.5
0 0.5 72.4 ± 3.3 77.5 ± 1.5 89.9 ± 1.6 94.0 ± 0.7

DenseNet-121
0 0 72.0 ± 2.4 78.4 ± 1.3 89.6 ± 1.1 94.3 ± 0.6
0.5 0 71.3 ± 2.7 77.7 ± 1.0 88.6 ± 2.4 94.0 ± 0.4
0 0.5 71.4 ± 2.7 77.6 ± 1.0 89.3 ± 1.7 94.0 ± 0.4

Table 5.14: Scores of feature forwarding combined with loss weights or oversampling
on the full hierarchy cascade with both basic architectures.

Discussion

In three out of four cases, feature forwarding combined with pretraining leads to
small improvements of the performance scores when compared to pretraining alone.
These small improvements are stronger for the full hierarchy compared to the ul-
trametric hierarchy, however still very small, and therefore might be negligible. Po-
tential gains arise from the additional information the networks receive from their
predecessors in form of the concatenated embedding vectors, which might explain
the slightly larger gains for the deeper full hierarchy cascade compared to the ul-
trametric hierarchy.
A main advantage of including the embeddings is their potential to deliver feature

space representations, usable for example for visualisation of the trained model. As
indicated in the plots in Figure 5.13, the different groups and classes predicted by
every network are visible as clusters. The annotations show the majority class in
these clusters, however, some misclassifications are visible where points lie not close
to points of the same class, but between samples from other classes. The clusters in
the first two networks consist of multiple combined leaf-classes. In some but not all
cases, there are visible trends within these clusters, rather than just approximately
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Figure 5.13: Embeddings of three networks on the path from the root to the leaf-
classes of neutrophilic granulocytes. Each scatter point represents the
100-element embedding obtained from the respective convolutional net-
work after dimensionality reduction to two dimensions using UMAP
[43]. The ellipses and the annotations have been added manually only
for illustrative reasons.

uniform distributions of the individual leaf classes. For example, in the group of
neutrophilic granulocytes in the second network, more mature samples are located
predominantly on the left side and immature stages such as promyelocytes on the
right side in the two-dimensional space. These small trends even within the combined
classes might be a contributing factor to the slight performance increases, because
they indicate that some information about the leaf-class membership is already en-
coded in some earlier embeddings, potentially making them useful for later stages
in the cascade. In the third network, predicting the cell type within neutrophilic
granulocytes, the clusters majorly consisting of band granulocytes and metamyelo-
cytes overlap. This is consistent with the previous observation and the assessment
by medical experts (see Appendix A.2) that these two classes are especially easily
confusable. For the clusters to be visible in the visualisations of the embeddings
extracted at the second and third network, these embeddings must contain most of
the relevant information required for the classification at these stages. This proves
that each stage encodes new knowledge, and at the same time underlines that the
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5.9 Feature Forwarding

Figure 5.14: Visualisation of the learnt overall feature space from all networks in
the full hierarchy cascade. Dimensionality reduction of concatenated
embeddings from all networks was performed using UMAP [43].

performance improvements of feature forwarding are limited: the predictions seem
to be made mainly from the embedding that has been added at that particular
stage of the cascade. This is caused by the fact that no networks are trained before
their predecessors. The earlier networks are trained only to produce embeddings
optimised for their particular task, and not for their descendants. Because – once
finished – these are not further trained, the ability to produce more complementary
embeddings, largely increasing the classification performance, is limited.

The dimensionality reduction of the concatenated embedding vectors, shown in
Figure 5.14, provides a visualisation of the entire cascade model. In this plot, there
are several different clusters visible, which largely correspond to different classes.
There are clusters containing different cell types, for example eosinophilic granulo-
cytes, or cells of erythropoiesis. The different stages of neutrophilic granulocytes
make up a large cluster – at least in the two-dimensional space. Other than in the
dimensionality reduction of only the embedding from the root network, a general
gradient of maturity from the lower to the upper part of the cluster is clearly vis-
ible, although without any sharp boundaries. A similar gradient is also visible in the
scatter plot from the network for granulopoiesis, but it is much more pronounced in
the concatenated embedding space.
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Embeddings could also be calculated for each network without forwarding them
by concatenation. While this would not utilise the already extracted features in
other networks in any way, it would still allow similar visualisations, with the pos-
sible advantage of more independence of the individual networks, especially during
training.
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6 Discussion and Outlook

In the following, the developed methods are discussed on a more general level in
consideration of the experiment results. Important findings of this work are men-
tioned, combined with a summary of their implications and practical advice for the
application of hierarchical classification cascades. In addition to the major findings,
aspects that might be interesting for the future but go beyond the scope of this work
are discussed.

The results of the experiments show that, in general, hierarchical cascades of deep
networks, as developed in this work, can successfully be employed for classification.
However, the underlying hierarchy must be selected very carefully, otherwise hier-
archical classification can potentially decrease the performance. Generally, similar
classes should be grouped together at early levels in the hierarchy. In the haemato-
logical domain, the best performance is achieved when performing the hierarchical
classification oriented on the actual cell taxonomy. While a hierarchy with more
balanced class sizes can also provide good results, it does not achieve higher scores
than single classifiers or cascades oriented on the domain. The class sizes therefore
should, if possible, be considered when implementing hierarchical classification, but
not as the only criterion to build a hierarchy. Other approaches, focused only on
individual characteristics or even without biological justification, perform consider-
ably worse, which shows that the number of networks alone does not improve the
classification.

Predictions can be made probabilistically by calculation of the a posteriori prob-
abilities for all classes based on the network confidences, or deterministically by
greedily following only the highest confidences of the networks in the hierarchy. In
theory, these two algorithms do not always lead to the same predictions, as the
deterministic algorithm does not make use of the confidences of the individual net-
works. However, the experimental results show that, when applying the softmax
function, the differences between the results from both methods are negligible. One
reason for this is most likely the overconfidence of the networks. An interesting as-
pect for the future is to introduce more realistic confidence measures, which conform
better with the observable classification reliability. With such a measure, the differ-
ence between the probabilistic and the greedy, deterministic algorithm to determine
the final cascade prediction should be re-evaluated. While there is effectively no
difference in the outcome with overconfident networks using the softmax activation
function, other probabilistic measures might increase - or decrease – the perform-
ance obtained with soft propagation. Additionally, networks could be trained with
an additional class representing rejected samples, which do not belong to any of
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6 Discussion and Outlook

the children’s classes. Strictly speaking, such an approach violates the assumption
that in soft propagation a network only estimates the conditional probabilities of its
children, given that its own class is true. In practice, however, it could make the
cascades more robust, but would require alterations to the probabilistic decision-
making process.

The best performance of cascades is achieved with pretraining on the target data-
set, followed by separate training of the individual networks. Other methods, such
as weighted losses or oversampling to partly compensate for the class imbalance do
not lead to large improvements. On the contrary, the results indicate that they
should be employed very conservatively, because too large weights or too excessive
oversampling can strongly decrease the performance. This is also true for block
sharing between the individual networks. While sharing the first conventional lay-
ers, providing basic and therefore universal features, does not strongly affect the
performance, later blocks should remain separate, such that they can be trained for
the particular sub-task within the cascade. In general, the largest gains could most
likely be achieved by extending the dataset, since for all approaches the worst scores
are mainly achieved for the underrepresented classes. While the exclusion of certain
classes is inevitable for further research as long there are too few samples, it is not
possible in real-world applications. This could not only involve additional annota-
tions, but further data augmentation techniques, including generative approaches.
Additionally, an inter-rater study to increase the reliability of the existing annota-
tions might also be beneficial.

Hierarchical cascading of a classification task using deep neural networks does
not increase the classification performance in all cases compared to flat networks.
As the hierarchical evaluation scores show, flat deep networks are already capable
to distinguish different lineages relatively reliably, while most misclassifications oc-
cur between closely related classes. To maximise performance, flat but very deep
networks, for example ResNet-152 or DenseNet-201, might be a more promising ap-
proach than cascades of more shallow networks, especially in combination with mod-
erate loss weights and oversampling. However, if the additional effort for pretraining
of the individual networks on the target dataset is acceptable, similar performances
can be achieved by the cascades. Cascades require significantly more training than
flat networks, simply because multiple networks have to be trained, instead of only
one. However, in terms of resource occupation, the cascades are not generally more
demanding than a deeper single network. The required GPU-memory for the cas-
cades is – when the networks are trained separately – not higher than the demands
of the deeper flat networks with the same overall training setup. A somewhat sim-
ilar alternative approach that might be worth further investigation are ensembles of
flat networks. In contrast to the hierarchical cascades, these could combine multiple
networks not hierarchically, but in parallel and make predictions for example by
majority vote. The differences between the parallel networks could either be meth-
odological by selection of different architectures or varying hyperparameters and
optimisation techniques, or they could only be random Possible random approaches
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might involve arbitrary shuffling or subsampling, for example by bagging [55], of the
training set. Although such ensembles could consist of a similar number of networks
as hierarchical cascades, they would most likely require more extensive training, be-
cause all networks would have to be trained on the entire dataset, instead of only
subsets.

Cascading has other advantages, mainly in introducing modularity that a con-
ventional, flat network cannot offer. If not relevant for a particular task, whole
branches of the hierarchy including the networks could be neglected. On the other
hand, an existing cascade could potentially be extended, for example when more
samples become available. Classes that have been merged – for example basophilic
granulocytes – could then be split again, which would only require an additional
network at the leaf level, specifically trained only on a relatively small subset of the
data. If a network were to be added at the root level on the other hand, for ex-
ample to include artefacts, it would need to be trained on the entire dataset. When
extending an existing cascade combined with academic evaluation of the resulting
model, it must be ensured that the dataset splits used for training, validation and
testing are preserved also for the additional networks. Another advantage is that
local networks can be optimised more specifically. When using separate training,
which is preferable for classification performance reasons and GPU-memory con-
sumption, different training parameters, including different loss functions, could be
used for each individual network. As was shown in this work, it is even possible
to include other network types such as regressors. Regression at some points in
the hierarchy is biologically well founded because of the ordinal character of the
individual lineages, but it is not an appropriate approach at other nodes. This is
also illustrated by the feature space representations derived from the dimensionality
reductions of the embeddings obtained in the last experiment. The clusters of some
lineages, most prominently neutrophilic granulocytes, but also eosinophilic granulo-
cytes and erythroblasts, appear connected, often with some gradient of increasing
maturity within the cluster. In a single, classical network, such combinations of
classification and regression are not possible. When incorporating different network
types into the cascade, it is important to consider whether they provide a prob-
abilistic confidence measure, because soft propagation is not applicable otherwise.
For regressors, a classification can be achieved by simple rounding, which limits the
cascade decision making process to hard propagation. Other additional information
which can directly be provided by a hierarchical cascade are intermediate level con-
fidences, although such group-wise confidences can also be calculated from the leaf
confidences provided by flat classification networks.

Another example for more in-depth information provided by hierarchical cascades
are the multiple local embedding vectors introduced with feature forwarding. Even
though the performance gains achieved with feature forwarding are small, these
embedding vectors allow feature representations not only of an overall model, but
also at intermediate levels. In the experiments, the embeddings of all networks were
concatenated in a fixed order to obtain a feature representation of the entire model
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6 Discussion and Outlook

as a whole. This method could be problematic in some cases, and might have to be
adjusted in the future, based on the particular use case. Firstly, the concatenated
vector can become very long, and the entries from some networks might not be
relevant for a given sample. A naive approach to only concatenate the vectors on
the path from the root to the predicted leaf leads to the problem that an entry at
a given position represents different characteristics in different samples. Therefore,
it might be necessary to reduce the embedding length, to subsample the vector
in some way, or to find other methods to obtain a suitable size. One potential,
although relatively intricate approach might be to introduce an additional fully-
connected layer to map this vector to a smaller size, trained to allow a good overall
classification based on this mapping. Secondly, concatenation of the embeddings
from all networks implicitly assumes soft propagation, where the samples are parsed
to every network. In hard propagation on the other hand, the tree is pruned, and
not all embeddings are retrieved. This problem could, for example, be addressed by
zero-padding. The resulting vector should have the same length as the concatenation
of all vectors, which is nemb times the number of networks in the whole cascade. The
individual vectors on the path from the root to the leaves could then be inserted at
designated positions. Whether these ideas are viable requires further examination
in the future, if the necessity arises.
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7 Conclusion

In this work, domain knowledge was incorporated into the classification of haema-
topoietic cells by splitting it into hierarchical sub-tasks. Different training strategies
for deep neural networks within these cascades were examined, whereof separate
training of the individual networks showed a higher performance than end-to-end
training of the entire cascade.
Two methods to obtain final predictions were investigated. Whether the full,

probabilistic approach, or the greedy, deterministic algorithm was used did not make
a large difference in terms of the overall performance.
While reaching similar classification scores, the cascades were not able to outper-

form flat state-of-the art networks, especially for networks with large depths such
as ResNet-152 and DenseNet-201.
By evaluating different classification hierarchies, it was shown that the best clas-

sification results are achieved by following the biological cell lineages. Hierarchies
deviating strongly from the haematopoietic lineages, for example based on single
characteristics, achieved lower classification scores both than other cascades as well
as flat classifiers. Therefore, the hierarchical classification has to be applied care-
fully, and should only be performed based on a strong theoretical foundation. If such
a taxonomy is given, hierarchical cascades offer some advantages over flat networks.
Main advantages include a larger adaptibility, for example by the possibility to

incorporate other network types such as regressors, which can account for partly
ordinal classes. Such diverse networks can provide additional measures that go bey-
ond plain classification, for example a cell maturity estimate in the haematopoietic
domain. On the other hand, cascades require significantly more resources in form of
training time and memory compared to single networks with the same architecture.
Further optimisation techniques were evaluated, of which pretraining of the indi-

vidual networks showed the largest improvement in terms of several different clas-
sification performance scores, including hierarchical measures. A method called
feature forwarding was introduced, which involves passing of embedding vectors
through the hierarchy. While no large improvement of the model was achieved, it
was shown that the embedding vectors can be useful for visualisation of the feature
spaces not only of the overall model, but also at intermediate stages.
Overall, in terms of the macro-averaged F-score, the highest classification perform-

ance of 72.4 % was achieved for a hierarchical cascade following the haematopoietic
cell hierarchy, consisting on ResNet-18 networks pretrained on the haematological
domain and employing feature forwarding. For comparison, out of different flat
networks, DenseNet-201 reached an F-score of 71.8 %, only surpassed by DenseNet-
121 combined with oversampling of underrepresented classes, which also attained a
performance of 72.4 %.
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A Appendix

A.1 Proof of Equivalence of the Micro-Averaged
F-Score and Accuracy

The first steps of the following proof of the equivalence of the micro-averaged F1-
score and the accuracy for multi-class problems are based on https://simonhessn
er.de/why-are-precision-recall-and-f1-score-equal-when-using-micro-a
veraging-in-a-multi-class-problem/. We want to show

F1,micro = accuracy. (A.1)

If each sample is assigned to exactly one class, each misclassification contributes a
pair of one false positive and one false negative, such that the total numbers of false
positives and false negatives are always equal when looking at all classes together:

n∑
i=1

NFP,i =
n∑
i=1

NFN,i (A.2)

With the definitions of micro-averaged precision (2.19) and recall (2.20) this imme-
diately leads to

precisionmicro = recallmicro. (A.3)

In fact, from (A.3) and the definition of F1,micro (2.21) it follows that micro-averaged
precision, recall and F1-score are equal:

F1,micro =
2 · precisionmicro · precisionmicro

precisionmicro + precisionmicro
= precisionmicro. (A.4)

The accuracy was defined in (2.13) as

accuracy =

∑n
i=1NTP,i∑n

i=1NTP,i +
∑n

i=1NFP,i

.

This is nothing but the fraction of correct predictions relative to the total number
of predictions. It is apparent that this is the same as the micro-averaged precision
(2.19), and because of (A.4) also as the micro-averaged F1-score.
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A Appendix

A.2 Similarity score based on survey of medical
experts

Two medical experts from the Department of Haematology, Oncology, Haemostaseo-
logy and Stem Cell Transplantation at the University Hospital of the RWTH Aachen
University were asked to rate the similarity between 15 cell types on a scale from 1
to 5:

1. not confusable

2. hard to confuse

3. sometimes confusable

4. easy to confuse

5. not distinguishable

The resulting matrix is shown in Table A.1. It should be noted that this matrix
is not fully symmetrical. The pre-processing of this matrix to be a valid similarity
matrix for spectral clustering is described in Chapter 4.4.4.
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basophilic granulocyte - 1 2 1 1 1 1 1 1 1 1 1 1 1 1
eosinophilic gran. 2 - 1 1 1 1 1 1 1 1 1 1 1 1 1
promyelocyte 2 1 - 3 1 1 1 2 1 1 1 1 1 1 1
myelocyte 1 1 3 - 2 1 1 1 1 1 1 1 1 1 1
metamyelocyte 1 1 1 2 - 3 1 1 1 1 1 1 1 1 1
band gran. 1 1 1 1 3 - 3 1 1 1 1 1 1 1 1
segmented gran. 1 1 1 1 1 3 - 1 1 1 1 1 1 1 1
blast 1 1 2 1 1 1 1 - 2 2 1 1 1 1 2
lymphocyte 1 1 1 1 1 1 1 2 - 1 1 1 1 1 2
proerythroblast 1 1 1 1 1 1 1 2 1 - 2 1 1 1 1
basoph. erythrobl. 1 1 1 1 1 1 1 1 1 2 - 1 1 1 1
polychr. erythrobl. 1 1 1 1 1 1 1 1 1 1 1 - 2 1 1
orthochr. erythrobl. 1 1 1 1 1 1 1 1 1 1 1 2 - 1 1
promonocyte 1 1 1 1 1 1 1 1 1 1 1 1 1 - 3
monocyte 1 1 1 1 1 1 1 1 2 1 1 1 1 3 -

Table A.1: Similarity survey results.
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A.3 Class-Wise Scores for Flat Networks and
Different Hierarchies

In the following, the class wise F-scores of different hierarchies are listed in the
most basic experimental setting using seperate training of networks pretrained on
ImageNet and soft propagation.

Flat

DenseNet-121 ResNet-18 DenseNet-201 ResNet-152

mean ± std mean ± std mean ± std mean ± std

Basophilic granulocyte 86.5 ± 3.5 89.0 ± 4.0 88.9 ± 4.0 89.0 ± 6.2
Eosino. gran. (immat.) 76.8 ± 7.2 77.5 ± 8.2 77.8 ± 6.5 81.6 ± 3.3
Eosino. (mature) 76.1 ± 10.2 78.1 ± 6.9 73.8 ± 8.6 79.7 ± 4.0
Promyelocyte 89.0 ± 2.0 87.9 ± 3.3 87.6 ± 2.2 88.9 ± 2.4
Myelocyte 67.3 ± 6.0 64.8 ± 3.7 65.7 ± 3.1 69.8 ± 4.8
Metamyelocyte 67.1 ± 4.0 65.4 ± 3.6 67.0 ± 3.1 67.6 ± 4.4
Band granulocyte 75.9 ± 3.4 73.6 ± 1.9 77.2 ± 1.2 77.3 ± 1.0
Segmented granulocyte 88.5 ± 1.4 87.5 ± 1.6 88.9 ± 1.5 89.4 ± 1.8
Blast 55.4 ± 6.8 55.9 ± 10.9 55.7 ± 7.2 59.8 ± 7.2
Lymphocyte 76.8 ± 5.7 77.5 ± 7.3 78.2 ± 4.3 78.1 ± 7.6
Plasma cell 67.6 ± 35.2 75.1 ± 16.1 82.2 ± 22.2 71.1 ± 35.8
Proerythroblast 66.4 ± 17.5 63.3 ± 11.0 65.6 ± 13.4 63.9 ± 19.5
erythroblast (basophilic) 70.2 ± 7.1 70.8 ± 5.2 73.5 ± 9.8 71.5 ± 4.9
erythroblast (orthochr.) 63.0 ± 7.0 60.3 ± 4.6 61.1 ± 6.1 60.5 ± 3.2
erythroblast (polychr.) 80.8 ± 4.2 79.7 ± 3.7 80.0 ± 3.1 79.8 ± 3.2
Megakaryopoiesis 84.9 ± 18.9 84.9 ± 18.9 87.3 ± 19.9 79.4 ± 18.5
Promonocyte 19.0 ± 19.0 13.8 ± 8.8 20.3 ± 3.9 19.6 ± 12.0
Monocyte 60.5 ± 6.9 60.8 ± 8.1 61.3 ± 7.8 57.9 ± 5.6

Table A.2: Class-wise F-scores of flat networks.
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Full Ultrametric

RN-18 DN-121 RN-18 DN-121

mean ± std mean ± std mean ± std mean ± std

Basophilic granulocyte 90.0 ± 5.0 90.9 ± 6.3 88.0 ± 4.0 89.3 ± 6.5
Eosino. gran. (immat.) 79.0 ± 6.3 77.6 ± 2.7 76.9 ± 6.7 79.0 ± 6.1
Eosino. (mature) 75.5 ± 8.2 76.5 ± 5.9 78.1 ± 5.1 78.0 ± 8.1
Promyelocyte 87.7 ± 2.6 87.6 ± 2.1 88.1 ± 2.3 88.4 ± 3.3
Myelocyte 66.5 ± 4.9 63.8 ± 3.7 65.9 ± 2.8 64.4 ± 4.2
Metamyelocyte 65.1 ± 2.4 66.7 ± 1.4 64.5 ± 3.4 64.9 ± 3.7
Band granulocyte 73.9 ± 2.5 76.8 ± 2.2 75.2 ± 1.7 76.4 ± 2.3
Segmented granulocyte 88.4 ± 1.1 89.5 ± 1.3 89.2 ± 0.8 89.6 ± 1.3
Blast 56.0 ± 8.7 53.0 ± 12.2 53.5 ± 7.6 55.4 ± 8.2
Lymphocyte 75.7 ± 6.7 74.7 ± 5.8 75.9 ± 6.0 72.2 ± 7.7
Plasma cell 76.1 ± 21.0 69.0 ± 15.5 71.4 ± 17.4 68.5 ± 34.8
Proerythroblast 66.5 ± 9.6 62.8 ± 6.9 63.6 ± 22.5 68.6 ± 16.6
erythroblast (basophilic) 65.4 ± 6.7 67.0 ± 5.0 70.6 ± 10.2 71.1 ± 7.9
erythroblast (orthochr.) 63.0 ± 5.2 61.8 ± 6.0 64.0 ± 6.2 61.6 ± 8.9
erythroblast (polychr.) 80.2 ± 3.4 79.1 ± 2.8 80.9 ± 3.7 79.7 ± 4.5
Megakaryopoiesis 80.4 ± 21.5 83.1 ± 17.6 87.1 ± 17.0 83.4 ± 21.8
Promonocyte 18.8 ± 14.0 22.7 ± 15.6 21.0 ± 3.5 14.2 ± 9.0
Monocyte 57.9 ± 4.2 59.6 ± 7.7 56.7 ± 11.6 57.9 ± 4.1

Table A.3: Class-wise F-scores of the full and the ultrametric hierarchy with the two
different network architectures.

Cytoplasm features Ratio/shape features

RN18 DN-121 RN18 DN-121

mean ± std mean ± std mean ± std mean ± std

Basophilic granulocyte 85.4 ± 4.3 88.9 ± 7.1 89.7 ± 6.5 88.9 ± 6.2
Eosino. gran. (immat.) 76.2 ± 5.4 78.5 ± 6.0 78.7 ± 3.7 78.5 ± 4.3
Eosino. (mature) 77.6 ± 4.5 75.7 ± 8.3 74.0 ± 2.8 77.3 ± 4.5
Promyelocyte 86.7 ± 1.9 88.0 ± 2.3 86.3 ± 1.6 87.4 ± 2.2
Myelocyte 62.5 ± 3.2 64.5 ± 5.2 61.6 ± 2.3 65.8 ± 5.6
Metamyelocyte 66.1 ± 3.5 67.7 ± 3.3 61.6 ± 4.6 63.0 ± 3.8
Band granulocyte 74.3 ± 2.8 76.0 ± 2.9 71.8 ± 3.6 73.7 ± 2.0
Segmented granulocyte 88.2 ± 1.6 89.0 ± 1.9 88.1 ± 1.1 89.0 ± 1.1
Blast 49.6 ± 8.7 49.1 ± 8.8 43.8 ± 7.0 46.7 ± 12.3
Lymphocyte 71.5 ± 7.0 74.4 ± 6.9 72.1 ± 4.7 74.8 ± 6.1
Plasma cell 61.5 ± 32.3 75.2 ± 18.5 71.8 ± 21.0 72.5 ± 20.9
Proerythroblast 70.0 ± 8.8 65.1 ± 17.1 54.5 ± 16.1 58.1 ± 23.5
erythroblast (basophilic) 71.4 ± 9.1 70.9 ± 9.8 69.2 ± 8.8 67.0 ± 9.2
erythroblast (orthochr.) 61.7 ± 7.2 64.6 ± 10.5 61.7 ± 7.9 58.6 ± 9.2
erythroblast (polychr.) 81.8 ± 2.0 82.1 ± 4.3 80.6 ± 2.8 77.0 ± 5.3
Megakaryopoiesis 81.6 ± 17.4 13.3 ± 32.7 44.3 ± 48.9 23.8 ± 38.0
Promonocyte 23.0 ± 10.2 16.2 ± 10.7 15.4 ± 16.3 10.4 ± 9.7
Monocyte 54.3 ± 13.8 55.7 ± 9.7 52.4 ± 9.8 58.4 ± 8.2

Table A.4: Class-wise F-scores of cytoplasm and ratio/shape feature-based hierarch-
ies.
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Nucleus features

RN18 DN-121

mean ± std mean ± std

Basophilic granulocyte 88.4 ± 8.3 85.4 ± 9.8
Eosino. gran. (immat.) 77.2 ± 6.4 78.6 ± 3.8
Eosino. (mature) 76.8 ± 5.1 77.3 ± 6.8
Promyelocyte 87.7 ± 1.9 88.1 ± 2.5
Myelocyte 62.4 ± 3.7 63.8 ± 4.8
Metamyelocyte 65.0 ± 3.9 63.8 ± 4.5
Band granulocyte 74.4 ± 3.0 74.2 ± 1.5
Segmented granulocyte 87.2 ± 2.0 88.1 ± 1.7
Blast 53.9 ± 7.1 53.0 ± 7.4
Lymphocyte 71.6 ± 7.4 72.9 ± 5.9
Plasma cell 62.0 ± 34.6 59.9 ± 33.5
Proerythroblast 68.5 ± 11.2 58.7 ± 14.9
erythroblast (basophilic) 66.5 ± 4.7 63.1 ± 5.2
erythroblast (orthochr.) 62.8 ± 6.8 60.3 ± 10.1
erythroblast (polychr.) 79.1 ± 2.3 79.0 ± 3.3
Megakaryopoiesis 48.3 ± 38.7 11.1 ± 27.2
Promonocyte 6.1 ± 14.8 16.5 ± 9.6
Monocyte 50.9 ± 9.6 55.3 ± 7.8

Table A.5: Class-wise F-scores of hierarchy based on nucleus features.

Confusion clustering Similarity clustering

RN18 DN-121 RN18 DN-121

mean ± std mean ± std mean ± std mean ± std

Basophilic 86.6 ± 6.9 90.7 ± 4.7 84.2 ± 8.9 89.3 ± 6.9
Eosinophilic (immature) 79.0 ± 7.0 80.2 ± 5.0 78.9 ± 4.7 78.6 ± 7.7
Eosinophilic (mature) 80.3 ± 5.2 78.4 ± 6.2 75.5 ± 5.2 80.4 ± 6.0
Promyelocyte 87.6 ± 2.5 87.9 ± 1.9 88.0 ± 1.5 87.8 ± 2.0
Myelocyte 64.9 ± 1.7 65.6 ± 4.6 65.4 ± 2.1 64.3 ± 4.2
Metamyelocyte 63.4 ± 3.1 65.1 ± 1.9 64.2 ± 5.4 67.7 ± 4.1
Band granulocyte 72.1 ± 1.8 75.7 ± 1.7 73.6 ± 2.3 75.7 ± 1.7
Segmented granulocyte 87.6 ± 1.5 90.0 ± 1.4 88.0 ± 1.6 88.6 ± 1.7
Blast 53.9 ± 7.9 51.0 ± 6.4 48.4 ± 4.7 48.1 ± 10.7
Lymphocyte 75.1 ± 5.2 71.8 ± 8.5 73.1 ± 7.7 72.9 ± 7.2
Plasma cell 60.5 ± 31.5 81.2 ± 13.8 75.5 ± 21.2 76.8 ± 23.9
Proerythroblast 51.8 ± 28.2 21.2 ± 29.1 67.4 ± 11.9 63.8 ± 14.9
Erythroblast (basophilic) 67.0 ± 5.3 67.3 ± 4.5 73.7 ± 6.0 70.3 ± 9.2
Erythroblast (orthochr.) 63.4 ± 6.6 61.0 ± 10.6 59.9 ± 5.3 57.5 ± 9.8
Erythroblast (polychr.) 80.3 ± 3.0 79.4 ± 3.9 80.2 ± 3.6 77.6 ± 5.0
Megakaryopoiesis 63.1 ± 34.1 61.7 ± 33.7 0.0 ± 0.0 11.1 ± 27.2
Promonocyte 0.0 ± 0.0 0.0 ± 0.0 5.2 ± 9.1 30.5 ± 11.3
Monocyte 55.7 ± 8.4 57.8 ± 9.1 58.2 ± 8.2 62.6 ± 6.0

Table A.6: Class-wise F-scores of clustering based hierarchies.
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Balanced Random

RN18 DN-121 RN18 DN-121

mean ± std mean ± std mean ± std mean ± std

Basophilic gran. 91.0 ± 3.0 88.3 ± 4.9 41.9 ± 46.1 86.1 ± 8.9
Eosino. gran. (immature) 77.9 ± 5.0 79.1 ± 7.2 75.7 ± 7.5 76.1 ± 3.5
Eosino. gran. (mature) 75.2 ± 4.6 76.1 ± 7.4 76.7 ± 5.5 74.8 ± 2.1
Promyelocyte 88.4 ± 2.4 89.2 ± 2.1 86.5 ± 2.7 88.0 ± 1.3
Myelocyte 66.8 ± 3.6 68.8 ± 5.3 60.9 ± 4.0 63.0 ± 4.4
Metamyelocyte 64.5 ± 2.2 66.6 ± 3.0 61.9 ± 3.8 63.3 ± 3.0
Band granulocyte 73.9 ± 3.2 74.9 ± 2.8 72.1 ± 2.7 75.3 ± 2.0
Segmented granulocyte 88.5 ± 1.4 89.4 ± 1.2 88.0 ± 1.3 88.8 ± 1.6
Blast 52.1 ± 8.6 54.1 ± 3.9 52.4 ± 8.1 52.4 ± 4.4
Lymphocyte 76.3 ± 6.9 76.7 ± 5.8 71.4 ± 3.1 75.8 ± 9.4
Plasma cell 71.2 ± 17.1 72.0 ± 20.1 79.7 ± 12.0 66.2 ± 17.1
Proerythroblast 57.6 ± 14.4 59.0 ± 15.3 21.5 ± 33.4 58.7 ± 14.2
Erythroblast (basophilic) 72.4 ± 7.7 74.6 ± 10.8 69.4 ± 7.9 68.8 ± 5.0
Erythroblast (orthochr.) 62.6 ± 8.5 60.7 ± 11.7 61.2 ± 5.9 57.1 ± 9.3
Erythroblast (polychr.) 82.1 ± 3.4 81.4 ± 2.9 80.5 ± 2.6 79.3 ± 3.5
Megakaryopoiesis 69.8 ± 29.0 71.0 ± 38.3 67.3 ± 37.2 79.4 ± 18.5
Promonocyte 17.8 ± 16.2 26.3 ± 14.6 2.8 ± 6.8 9.7 ± 11.5
Monocyte 57.5 ± 9.8 61.1 ± 9.2 52.3 ± 6.3 49.8 ± 10.3

Table A.7: Class-wise F-scores of the balanced and the random hierarchy.
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A.4 Validation Score and Losses for End-To-End
Training of the Full Cascade

The development of the validation F-score and the individual losses for end-to-end
training of the ultrametric cascade is given in Figure 5.5 in Section 5.3. For the sake
of completeness, the same plots for the full hierarchy are given in Figure A.1
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Figure A.1: Development of the validation-F1,macro-score and the different training
and validation losses for end-to-end training of the full cascade. The
highlighted lines are the respective averages over all six folds.
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A.5 Validation Score Plots for Flat Reference
Networks

The validation scores of flat ResNet-18 and DenseNet-121 are plotted in Figure A.2.
It can be observed that the validation score converges well before the end of training.
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Figure A.2: Average validation scores of flat ResNet-18 and DenseNet-121.
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